Contents

1 Date: September 11th, 2024

1.1 Goal: Line Detection From Video
1.2 Process.
1.3 Questions
1.4 Random Thoughts

2 Date: September 18th, 2024

2.1 Goal: ROS robot line following
2.2 Process.
2.3 Questions
2.4 Random Thoughts

3 Date: October 1st, 2024

3.1 Goal: GUI and tracking using SIFT
3.2 Process.
3.3 Questions
3.4 Random Thoughts

4 Date: October 8th, 2024

4.1 Goal: Build a neural network from scratch
4.2 Process. . . . oo
4.3 Questions

5 Date: October 15th, 2024

5.1 Goal: Character recognition from images
5.2 Process.
5.3 Questions

6 Date: October 29th, 2024

6.1 Goal: In sim line following using RL
6.2 Process. e
6.3 Questions

7 Date: November 5th, 2024

7.1 Goal: Cross-entropy inverted pendulum balancer
7.2 Process.o
7.3 Questions e
7.4 Random Thoughts

S O NN N

13
13
13
20
21

21
21
21
22

23
23
23
30

30
30
30
31

1. Date: September 11th, 2024

1.1. Goal: Line Detection From Video

Figure out Lab 2 as well as what the format of this logbook is going to be. Bear with me

while I figure out a style. ..

1.2. Process

1. T started by trying to follow the Lab 2 Google Colab setup. I got confused when it
said “You can download GitHub repos in your Colab instance and run code here.” I'm

not sure if that’s useful today.

o PATH = "/content/drive/My Drive/MI ENPH253"
labels = !1s "{PATH}"|
labels = labels[@].split()
print(labels)

Figure 1: Must update path

2. Then I changed this PATH to .../My Drive/ENPH353 because that’s where my stuff
is... Ran the cell, it worked fine.

3. I realized I was being dumb and I need to make a new blank colab. ..
4. Time to stop and think for a second:

(a) First I want to be able to take images from the video they gave us
(b) I want to be able to read pixels at a fixed height in the images

c¢) How do I tell the difference between pixel intensities in OpenCV?

e) I want to be able to tell the difference between the road and the rest of the video

f) Then I want to find the middle of the road and draw a red dot on it

(
(

)
)
()
(d) Do I need to create a mask?
)
)
(g) I do that for every single frame and re-export a new video

5. I asked GPT this:

is there a way to screenshot in xubuntu shortcut like windows key
shift s in windows

@ Yes, Xubuntu has a built-in screenshot utility with keyboard shortcuts, similar to the Windows
key + Shift + S functionality in Windows.

Here are the common shortcuts for screenshots in Xubuntu:
1. Print Screen (PrtSc): Takes a screenshot of the entire screen and saves it.
2. Alt + Print Screen: Takes a screenshot of the currently focused window.

3. Shift + Print Screen: Allows you to select an area of the screen to capture (this is similar to
Windows' Win + Shift + S).

Figure 2: Secrets to screenshotting unlocked

Now I can screenshot pretty easily.

6. I asked ChatGPT how to upload a file to my Colab. It told me:

google.cola
uploaded = files.upload()

Figure 3: Well that was easy enough

7. T asked ChatGPT how to get frames from the video:

cv2
numpy

cap = cv2.VideoCapture(video _path)

width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = [.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(cap.get(cv2.CAP_PROP_FPS))

out = cv2.vi iter , cv2.VideoWriter fourcec(*

Figure 4: Extracting still frames from a video

This looked a lil strange because earlier it told me to refer to the video as uploaded and

now I'm already specifying the file name... what does this mean? Find out soon. ..

raw_video_feed.mp4
raw_video_feed.mp4(video/mp4) - 8560450 bytes, last modified: nfa - 100% done
Saving raw video feed.mp4 to raw video feed.mp4

© import cv2
import numpy as np

Load the video
video path = 'raw video feecl.mp4' # Replace with your video file

Figure 5: Oh neat you can upload into code blocks in colab

I see that the video is called "raw_video feed.mp4" so I'm guessing that’s what I'm
supposed to replace it with... Worked.

ChatGPT went off when I asked it to code the pipeline for me, so I asked it to explain
everything like I'm 5... stay tuned.

python

(frame):

gray_frame =
sample_height = int(* frame_height)
row_of_pi 5 = ample_height, :]

_, thresh_frame . (gray_frame, . , ©vZ2.THRESH_BIMARY_

contours, _ = cv2.findContours(thresh_frame, /2. RETR_TREE,

contours:

road_contour = max(contours,

.circle(frame, (roa

frame

Figure 6: Sample implementation for the lab

10. This was a massive output of its process of placing a red dot in the middle of a road. . .
however it’s definitely flawed, because it’s creating a contour “box” around the road,
instead of just reading the value of the bottom... If you try and run this you will get
frames that have the red dot way off the path.

11. The next stage is to make it better! I asked it to explain what the box idea was and
it actually made sense, I also asked it to show me a sample of a frame being processed

and it gave me this:

Grayscale Frame

Thresholded ROI

Contours on Frame

Figure 7: What the...

Now. .. I know this looks weird. The contour is way too high... I think it’s just an issue

with my plotting (not the contour being in the wrong area). I tried for a long time to figure

out how to bring it down... didn’t succeed.

12. T asked GPT to help me smoothen the red dot, it created a sliding window of center
values that updates (to a limit of 3 values) as the video keeps playing.

13. T asked for comments and then I put everything into Colab with some comments and
text to explain each stage.

14. Submit!

1.3. Questions

1. How do I get multiple perspectives so I can perform a perspective transform?
2. Why am I using Colab for a project that uses OpenCV?

3. Why isn’t my contour plot where it should be?

4. What are other ways to do this?

5. How come my red dot doesn’t follow the road when it starts bending weird?

1.4. Random Thoughts

e If you're always trying to say the right things, your whole life is a test [heard this one

from Kanye a long time ago].

e Miti says we're at an inflection point in society, I wonder how many times people have

said that before about their respective time.

e This is like being thirsty and the only thing you have is a fire hose.

2. Date: September 18th, 2024

2.1. Goal: ROS robot line following

To get a robot simulation run in ROS and to have it line follow a path in the environment.

2.2. Process

1. T realize I never downloaded Python so I'm going to do that now. ..
$ sudo snap install code --classic

Found this from the Lab 1 document Miti created.

2. Apparently it was already installed... okay
3. I downloaded an extension called Doxygen Documentation Generator

4. T just made a new directory and launched an instance of ROS

B P P —

$ source ~/.bashrc * Rerun the ~/.bashrc script within the current
terminal. This will allow the current terminal to
load the alias we just added to the ~/.bashrc file.

Figure 8: First time sourcing

5. Lowkey this part makes sense, putting it in the process because it kind of clarifies
question 2.

6. I ran step 1.6 and got an output that I didn’t really understand so I asked ChatGPT
if it understood whether or not the command was successful.

can you tell me if 1.6 was successfully run

@ Ves, the command tail ~/.bashrc in step 1.6 was successfully run. In the
terminal screenshot, you can see the last lines of your .bashrc file displayed,

which confirms that the command worked as intended.

DA QS

Figure 9: Slowly starting to understand the terminal

7. Cloned Miti’s repo into the new directory I made

8. I opened the repo in VS Code and now I'm trying to find how to replace the visual
component of the track with a png (monza.png)

@ trackmaterial - enph353 ws - Visual Studio Code - x

File Edit Selection View Go Rum Terminal Help

texture unit
i

{
texture monza.png

Figure 10: Editing the simulation

9. Found it and replaced it.

10. T created a new launch directory, but it broke briefly so I asked GPT why, it was
because I didn’t have launch flags around my includes. Miti also taught me about
ROS security, and how we need to make sure we reference the directory even when

we're already in it if we want to run a file.

g

im on stage three, launch an ROS system, and I'm
being asked to create a launch file, can you help me
get that set up?

Figure 11: These are the kinds of prompts I used a lot during this class

11. T accidentally zoomed way the hell out... I have no idea how to get back.

Figure 12: Dear god...

12. NOT HELPFUL!!!!

ok so it worked but now im way zoomed out how do i
zoom in on gazebo :sob:

@ Noworries! You can easily zoom in on Gazebo. Here's how you can adjust the
view:

1. Scroll: Use the scroll wheel on your mouse to zoom in and out.
2. Keyhoard Shortcut:

s Press **ctrl** + **shift** and use your mouse scroll wheel to
zoom in and out more smoothly.

3. Manual View Adjustment:

s Hold down the right mouse button and drag to rotate the camera
around.

+ Hold down the left mouse button to pan the view.

If you're using a trackpad, the zoom can usually be done by using a two-
finger scroll.

Let me know if this works! You'll get that zoom level under control in no time

-
=

g B P o
Figure 13: ChatGPT could not save me... I grieve

13. Okay... Check In one complete:

Figure 14: Check point!!!

14. I included the robot launch in the launch file

15. Robot obtained. ..

NN
NN\

Figure 15: Now you can see the robot on the map

16. T asked GPT to give me a simpler version of the camera plugin found here: http:

10

http://classic.gazebosim.org/tutorials?tut=ros_gzplugins
http://classic.gazebosim.org/tutorials?tut=ros_gzplugins

//classic.gazebosim.org/tutorials?tut=ros_gzplugins

17. T also pasted the skid steering from the same link into my robot.xacro

er" filename="libgazebo r

Figure 16: Editing xacro files! We are learning

18. Came across a very strange bug where ros env kept crashing, I just restarted my pc

and all was well afterwards. .. weird

19. Iran rosrun rqt_image view rqt_image view which unfortunately just gave me this. ..

something is wrong

Figure 17: Can’t see the simulation space :(

20. I think it has something to do with the simplified camera plug-in I asked GPT to make
me so 'm trying the raw one from the same link in step 16.

21. Unfortunately that was not the issue... hmm

11

http://classic.gazebosim.org/tutorials?tut=ros_gzplugins
http://classic.gazebosim.org/tutorials?tut=ros_gzplugins

22.

23.

24.

25.

26.

27.

28.

2.3.

Great news, it was an issue with the rosrun command given to us, GPT told me to
try:

rosrun image_view image view image:=/rrbot/cameral/image raw

and it worked.

Next up:

rostopic pub /cmd_vel geometry_msgs/Twist "linear:

x: 0.0
y: 0.0
z: 0.0
angular:
x: 0.0
y: 0.0
z: 1.0"

I ran the above in a new terminal with gazebo open and my robot started spinning.

Interestingly enough even after terminating the terminal... bro’s still spinning.

Now I'm following steps GPT is helping me for the implementation of the line following.
The first thing it told me to do was nuke my packages... I am listening blindly.

Basically all it did was create the python file with the code, but the threshold was way
too high

Also it created a new launch file called 1ine_follower.launch

I don’t really understand how it created publishers and subscribers yet, will have to
do that tomorrow. ..

It basically one shot the whole lab and I just followed instructions and did code review
extensively later.

Questions

. Why does it matter that I source the ROS workspace?

What is going on with the alias section? Why am I appending stuff to the file instead
of somewhere else? Is it because the bash file I created is like the base file that has

everything we need?

Wonder what Mark Twain meant by his “truth is stranger than fiction” quote.

12

2.4.

3.

3.1.

Random Thoughts

(point and click adventure game pretty much...)

e What if I just take the lab and turn it into step-by-step instructions for me to complete

e Miti just said make sure your real time factor is the same on different computers where

you are testing integration - pretty sure that’ll become very important later

e Seems like I'm not controlling the robot’s physics at all which is nice. ..

scared about that initially, I'm just sending messages using topics.

Date: October 1st, 2024

Goal: GUI and tracking using SIFT

To get a working SIFT algo going.

3.2.

Process

1. Opened Qt Designer

2. It begins...

New Form — Qt Designer

templates/forms
Dialog with Buttons Bottom
Dialog with Buttons Right
Dialog without Buttons
Main Window
Widget

Widgets

Embedded Design

Device:

Screen Size: | Default size

| Show this Dialog on Startup

Open... || Recent '|| Close H Create]

Figure 18: First thing you are greeted with in QTS

13

I was a little

3. Add stuft!

wiaget 5ox WemWindow - untided=

[Fitter Type Here

Text Edit

Plain Text Edit

Spin Box

Double Spin Box
(© Time Edit

Date Edit

10 paterTime Edit

{& Dial

@ Horizontal scroll Bar
[vertical scroll Bar
{J= Horizontal Slider
P Vertical slider

Key Sequence Edit

- Display Widgets
T Label

Text Browser 0 8o
Wy Graphics View : © | pushButton | o
[72) calendar widget i
LCD Number
Progress Bar

= Horizontal Line
[l vertical Line
OpenGL Widget
<] QQuickwidget

- | PushButton | reyiabel - -

Figure 19: Adding labels and pushbuttons

4. Window tells you what objects you have in your UI

Object Inspector]
Object Class |

~ 5§ centralwidget Qwidget
brows...utton QPushButton
live i..._label QLabel
templ..label QLabel
toggl...utton QPushButton

menubar QMenuBar
statusbar QstatusBar

______ !

Property Editor]

Figure 20: Object Inspector on top right

5. For both labels:

14

|live_image_label : QLabel

Value
QObject
objectName live_image_label
Qwidget
enabled
* geometry [(410, 40), 320 x 240]
X 410
Y 40
Width 320
r sizePolicy [Preferred, Preferred, 0, 0]
¥ minimumsSize 0x0
b _maximumsSize 16777215 x 16777215
Resource Browser =

Figure 21: Adjusting size for the labels

6. More adjustments - you can change names too

| =

Property Editor

|Fi|ter |L_'E-. = j'_

MainWindow : QMainWindow

-

Property Value
tabletTracking]
focusPaolicy NoFocus
contextMenuPalicy Defau [tContextMenu
accepﬂ)mps

[smema| o

| v windowlcon
| windowOpacity 1.000000
+ toolTip
toolTipDuration -1
b statusTip
¥ whatsThis

b _arressibleMame

-

Resource Browser
GE . Filbne |

Figure 22: Changing window name to SIF'T Demo

7. Make sure your python file is executable!

15

Command Notes

$ ed ~/SIFT_app Change current directory to the SIFT_app folder.
$ touch SIFT_app.py Creates the SIFT_app.py file in the SIFT_app folder.
$ chmod 768 SIFT_app.py Changes the permissions for the SIFT_app to be

read, write and execute for the owner and none for
the group and other users.

L L T L T T I,

Figure 23: Changing permissions using chmod in bash

8. Pasted the code into the python file we were told to make, ran it, got this:

SIFT Demo

TextLabel TextLabel

Browse template ... Enable camera

— -

Figure 24: Ul pops up when you run the python file

9. Threw this in, tweaked the indentation

16

M} AMAAAN N R MLE AP ARG R LA A LAS WMASLS ARSI A RASE AL Aseeuree

01 |def _ init (self):

o2 super (My_App, self)._ dinit_ ()

o3 loadUi(, Self)

04

05 self.browse_button.clicked.connect(self.SLOT_browse_button)

and then adding the slot function to our My_App class as below:

@1 | def SLOT_browse_button(self)

02 dlg = QtWidgets.QFileDialog()
o3 dlg.setFileMode(QtWidgets.QFileDialog.ExistingFile)
04 if dlg.exec_():
@5 self.template_path = dlg.selectedFiles()[0]
06
o7 pixmap = QtGui.QPixmap(self.template_path)
o8 self.template_label.setPixmap(pixmap)
‘GQ ‘ print(+ self.template_path) ‘

Figure 25: Provided code for giving buttons functionality

10. Check the camera IDs

11.

12.

13.

14.

15.

16.

8. To get a live stream showing frem our camera we need to first identify what device id for a
our web camerais. To do this run:

Command Notes)

$ sudo apt install v4l-utils This install the video for linux utilities package.

§ valz-ctl --list-devices Lists the available cameras,

The camera ids are the ftem order in the list (0 based index). Most often 0 is the right +

Figure 26: Two available cameras

Watch out for tabs and spaces in python. ..
Pasted the full code given to us in lab 4

Taking a break... I have classes now. Will come back and watch videos / use GPT to
help me code the SIF'T algo.

Great I got a basic mapping of keyPoints working, took a little video and posted it on
instagram :p

I asked ChatGPT to help me draw the links between keypoints

Making a new directory where I can get GPT to help out

17

Figure 27: Creating a duplicate where I can mess around

17. Prompting GPT to help me out with getting the Ul-camera integration nice

i dont like this solution,

i want the image to display separate from the camera entirely, i
also want the image to disappear like so:

if a homography is possible to be made

Figure 28: Trying to get help with the layout

18. Currently my camera is blocked by the image it’s comparing to (lil robot guy not so
lil), T asked gpt to help out and also plot the homography

19. Didn’t work very well, very gross implementation - tried this instead:

18

Try to keep as much of this original code you can and add the
following functionality:

- if enough keypoints are viable to draw a homography, draw it
instead of showing the comparison image and the keypoint
matches (choose 10 as the threshold)

- if a homography is not possible to draw, display the image we

are comparing the camera feed to side by side with the camera
(not overlapped)

#!/usr/bin/env python3

from PyQt5 import QtCore, QtGui, QtWidgets
from python_gt_binding import loadUi

Figure 29: The prompt I used to try again

20. This is so funny what the???

Figure 30: Absolutely failed

21. Im crying of laughter

19

Figure 31: It failed again this is so funny why am I off the screen entirely

22. Its so buggy, can’t wait to ask for help tomorrow

23. It works though!!! Submitting this because it meets the requirements but needs slight
improvements which I need help with hahaaaa.

Browse template ... Disable camera

Figure 32: Homography works!

3.3. Questions

1. Why is python so sensitive?
2. Why did the image stretch?

3. How do I make it so the UI allows me to have the keypoints matched without eating
up 80% of my camera space?

4. What’s with the circles and angles being drawn on the keypoints?

20

3.4.

4.1.

4.2.

How does the homography know how to draw the outline? How would it respond to a

triangular or circular image? What about something abstractly shaped?

How does my UI know to adjust the label positions when I'm displaying my keypoints
(it expands somehow)?

Random Thoughts

I find these bugs hilarious for some reason

Midterm friday and I decided I was going to ease up on the gas this week... now I
have to floor it... who would have thought

Date: October 8th, 2024

Goal: Build a neural network from scratch

Process

. I'just learned that neural networks are essentially a large set of arbitrary math expres-

sions? Maybe that’s not the best way to say it but, I'm trying to apply what I learned

from micrograd to neural networks.

. He just said neural networks and backpropagation can be done with 100 lines of code

oh man. ..

1 ud

In [1: a.data += 0.01 * a.grad
b.data += 9.01 * b.grad
c.data += 0.01 * c.grad
f.data += 0.01 * f.grad

Figure 33: Datatype and gradients are related

3. Why did he do this? If you increase b in the direction of the gradient you would get a

lower value of L overall... he was trying to increase L

4. T cant quite put in words what this is doing

21

out. backward = backward

Figure 34: New python stuff I don’t fully understand

5. How is it the accumulation of the gradients thats so beautiful

6. Why didnt he implement radd?

7. T asked gpt to fix my spacing cuz i messed up an indent somewhere (python is brutal)
8. He never implemented radd but you had to. ..

9. Thats amazing you always increase your value with respect to its own gradient if you

want to increase your final value

10. Seems like i broke something doing the forward and backward prop he was demon-

strating to minimize loss idk what happened am i dividing by 0 or something

ypred = [n(x) for x in xs]
loss = sum((yout - ygt)**2 for ygt, yout in zip(ys, ypred))

Traceback (most recent call last)
-5f5doeedfedl> in <cell line: 1>()
(x) X xs]
loss = sum((yout - ygt)**2 ygt, yout zip(ys, ypred))
loss

A
+ O frames
<ipython-input-189-5547be2b5849> in tanh(self)

tanh(self):

x = self.data

t = (math.exp(2 * x) - 1) / (math.exp(2 * x) + 1)
out = Value(t, (self,), 'tanh’)

OverflowError: math range error

Figure 35: Strange error, trying to figure it out...

4.3. Questions

1. What is cross entropy loss and why does it sound so cool?
2. What actually was pytorch. .. i feel like i just threw it in
3. What happened at the very very end of the video?

4. Is the way I've commented illegal?

22

5. Date: October 15th, 2024

5.1. Goal: Character recognition from images
5.2. Process

1. Download and make a copy of the license plate generator

2. Asked gpt to help explain what the code we were given does

3. Basically it just draws nice license plates onto the background we downloaded
4. Two characters two numbers

5. for some reason the template given to us was referencing some random path that didn’t
exist so I changed it to pick out the ZZ21 license plate given to us

image_array = np.expand dims(Image.open(image path), @)

Figure 36: I think I am misunderstanding what this template is about but it’s okay let’s
continue

6. Oh im a fool... im not supposed to use the test image set... oops

. enph353_week05_cnn_intro.py

can you learn what this CNN is doing so we can apply its framework to

today’s project?

Figure 37: Asking GPT to help me map an existing CNN to one that I wil have to build
myself

7. 1 asked gpt to learn what the cats vs dogs notebook was doing so that I can try to get
it to help me do the same thing for today’s assignment

8. T got the size of my images so that I could see what I need to crop

23

10.

11.

12.

13.

1 print("Image size:", original image.size)

S~ Image size: (686, 298)

Figure 38: Image sizes printed on the bottom

Next step was to list some of the test images I generated so that I could get the cuts
for each letter done right

v Now | want to cut one of the test images into nice parts

2 image path =

7 number2 = img.crop((44e, 8 550, 230))

2 plt.imshow(letterl)

Figure 39: Completed hard-coded crop for license plate
These were the cutoff values that seemed to work best for the UR38 license plate. ..
kinda hoping it will work nicely for others, I can check real quick
(Also I used GPT to help me figure out how to crop images.)
It didn’t look perfect for another, so i made a minor adjustment

I love this, makes understanding this lab very easy... next step is to prepare the data
as chat GPT says

24

yea let's train the CNN

Great! Now that we have segmented the images into individual characters, we can move forward with

training the CNN to recognize them.

Here's the plan to move forward:
1. Prepare the Dataset: You already have 1000 images, but now we'll need to:
+ Crop all of those images using the coordinates you perfected.
* Assign labels to each of the 36 possible characters (26 letters + 10 digits).

+ Split the data into training and validation sets.

Figure 40: Working side by side with guidance from cgpt

14. soooo elegant, this makes sense

image dir =

cropped_dir =

os.path.exists(cropped_dir):

os.makedirs(cropped dir)

image files = os.listdir(image_dir)

image file image files:

image path = os.path.join(image dir, image file)

img = Image. n(image_path)

letterl
letter2
numberi

number2

base filename = os.path.splitext(image file)[?]
letterl.save(os.path.join(cropped_dir,
letter2.save(os.path.join(cropped_dir,
numberl.save(os.path.join(cropped dir,

number2.save(os.path.join(cropped_dir,

, croppe |, r)

Figure 41: How to organize each image into a corresponding directory

15. T asked GPT to explain why we need to label our letters and numbers numerically

25

does the CNN need the labels to be numerical? why

@ Yes, the CNN needs the labels to be numerical because neural networks operate on numbers—they

can't work with text or categorical data directly. Let's dive into why numerical labels are necessary:

1. Mathematical Computations:

* Neural networks use a series of mathematical operations (like matrix multiplications, activation
functions, etc.). These operations require that both the inputs (images) and the outputs (labels)

be in numerical form.

For the CNN to compute error during training and to adjust the weights through
backpropagation, it needs to compare the meodel's predictions (which are also numerical) against

the numerical labels.

2. One-Hot Encoding for Classification:

In your case, the CNN is trying to classify the characters into one of 36 possible classes (26 letters +

10 digits). The standard way to handle classification problems in neural networks is to:
1. Convert the labels to numbers.

2. One-hot encode those numerical labels so that the network knows which class is the correct

one.

Figure 42: Prompting GPT to explain labels to me

16. it told me to normalize my data for faster compute, but I imagine this step is highly
unnecessary since it will be so fast anyway. . .

cropped_file in cropped_files:

image path = os.path.join{cropped_dir, cropped_file)

th.jo
image = cv2.imread(image_path)

image = image /

Figure 43: Optionally, divide by 255 to normalize pixel values for faster CNN processing

17. T have an issue where I think I polluted my training set so I'm refreshing the colab to
make sure

18. I think I made a mistake refreshing. .. its not connecting to colab anymore :/

19. My images aren’t all the same size so I'm going to crop them a little better

26

. Letter 1:
¢ Width = 145 — 40 = 105
¢ Height = 230 — 80 = 150
* Size: 105x150

. Letter 2:

s Width = 260 — 140 = 120

* Height = 230 — 80 = 150

e Size: 120x150

. Number 1:
e Width = 450 — 345 = 105
* Height = 230 — 80 = 150
* Size: 105x150

. Number 2:
e Width = 550 — 440 = 110
= Height = 230 — 80 = 150

* Size: 110x150

Figure 44: Forgot that images need to be same size for CNN processing

20. Massive set-back but eventually i changed the values to something that made sense

img = Image.open(image path)

letterl = img.crop((48, 86,
letter2 = img.crop((145, 88, :
numberl = img.crop((344, 80,
number2 = img.crop((446, 80,

=

o
(%)
(¥}
o=

[
Voa
[0, Y

=9
[l
B
[SRS
S SV T}

Figure 45: Fixed letter width and height

21. Check out how much data I generated

Figure 46: Around 4000 images ready to train the CNN!

27

What Do These Numbers Mean?
1. Data shape: (3968, 150, 110, 3):
* 3968: This is the total number of images you have (3968 individual cropped segments).
* 150: This is the height of each image (150 pixels).

* 110: This is the width of each image (110 pixels).

* 3:This represents the color channels (RGB), meaning each image has 3 channels (red, green,

and blue).
2. Labels shape: (3968, 36):

* 3968: This matches the number of images, indicating that each image has a corresponding
label.

36: This represents the 36 possible classes (26 letters + 10 digits). The labels are one-hot
encoded, so each label is a vector of size 36 witha 1 at the index of the correct class and

8 s elsewhere.

Figure 47: Asking for help to understand all the numbers that .shape prints out
22. Oh man I'm cooked for this part, I asked for help with setting up the CNN architecture
and I am highly lost

23. Taking a walk while the model trains

validation_s

.7003 - accuracy: 0.8368 - val_] 04 - val_accuracy: 1.0000

.3201e-05 -

- val_accurac

val_accuracy:

val_accu
val_accu
val_accu

val_accurac)

Figure 48: Training the model!

24. These values must be fantastic... surely that loss is amazing, let’s see some graphs

28

25.

26.

27.

28.

Model Accuracy

—— [rain accuracy
—— val accuracy

4 B8
Epoch

Model Loss

—— ftrain loss
val loss

Figure 49: Definitely overfitting the training set

HAHAHAAAAAA something is critically wrong

Instead of debugging right away I'm going to continue with the lab and work backwards

later

I asked GPT for help with plotting the losses and confusion matrix

Now it’s time to debug

29

5.3. Questions

1. Why is my data overfitting so fast?

2. How many epochs should I choose?

3. Why are my val loss and val accuracy immediately set at 1 and 0 respectively?
4. Why does my confusion matrix only have diagonal values?

5. What does density mean in the context of the CNN architecture?

6. What does pooling mean in the context of the CNN architecture?

6. Date: October 29th, 2024

6.1. Goal: In sim line following using RL

To implement a Q-Learning model for the line following robot we implemented earlier.

6.2. Process

Figure 50: Must register the line following in the init.py file!

1. cool part

30

6.3.

1.

7.

7.1.

Questions

Why do I need to register the line following?

Date: November 5th, 2024

Goal: Cross-entropy inverted pendulum balancer

Implement a controller that mixes reinforcement learning and deep learning to control an

unstable robot.

7.2.

1.

10.

11.

12.

Process

Alrighty. .. Let’s download the folder given to us.

. Now I'm going to ask GPT to help me decode all the steps in excruciating detail

Noticing PERCENTILE is set to 30... seems awfully low?

Learned that we have a hidden amount of layers (I wonder why we call them hidden)...
Learned that we have an input space of obs_size, and an output of n_actions.
Learned how each episode is stored as a tuple with steps and reward as the parameters.

Learned that we're creating another tuple which stores the observation and action
taken for any particular step.

Noticing iterate_batches is a little confusing.
Filter_batch is pretty intuitive, I think I could write it from scratch.
Now we’ve reached the main training loop

GPT tells me to set the obs_size and n_actions.

To Do: You need to determine the observation space and action space from the

environment. Here's how you can do it:

@

space.shape[0]

n_actions = env.action_space.n

Figure 51: GPT trying to pull me out the depths of confusion

Learned about Adam optimizer for changing weights in the CNN.

31

13. Asked GPT to teach me about the training loop

» Training Loop:

» Iterate Over Batches: For each batch of episodes generated by iterate_batches ,

perform the following steps:
1. Filter Elite Episodes:
» To Do: Use the filter_batch function to select the top percentile of
episodes.

()]

bs_v, acts_v, reward_b, reward_m = filter_batch(batch, PERCENTILE)

2. Zero Gradients:

» To Do: Before performing backpropagation, clear existing gradients to
prevent accumulation.

optimizer.zero_grad()

3. Forward Pass:

« To Do: Pass the elite observations through the network to get action scores.

()]

Figure 52: GPT explanation of how the training loop kinda works (and what to do)

4. Calculate Loss:

» To Do: Compute the loss between the predicted action scores and the actual
actions taken.

loss_v = objective(action

5. Backward Pass and Optimization:

» To Do: Perform backpropagation to compute gradients and update the

network's weights.

optimiz

Figure 53: Explanation continued...

14. OK time to test if it runs:

32

4) Once you are done open a command line terminal and run the following commands to start training your agent:

source ~/enph353_gym-gazebo-noetic/gym_gazebo/envs/ros_ws/devel/setup.bash

cd ~/enph353_gym-gazebo-noetic/examples/gazebo_cartpole

python3 ./gazebo_cartpole_v@_xentropy.py

In another command line terminal tab start a tensorboard server by running

cd ~/enph353_gym-gazebo-noetic/examples/gazebo_cartpole

tensorboard --logdir runs

then open Firefox and navigate to: http://localhost:6806 to see the training dashboard for the agent.

Figure 54: Class-provided instructions on how to run the simulation and monitor the training

15. All set.

« > IO [localhost:6006/#scalars

MM ENPH 353 @ Object tracking usin.. [J Docs

TensorBoard SCALARS TIME SERIES

[[] Show data download links Q, Filter tags (regular expressions supported)

Ignore outliers in chart scaling

loss
Tooltip sorting method: default -
loss
tag: loss
Smoothing .
_— e 06 < 06 |
0.56
Harizontal Axis 0.52
RELATIVE WALL 0.48 +
044 |
Runs 0 2 4 6 8 w12
DEDE

Write a regex to filter runs

() NovD5_20-15-38_skynet-cartpole

reward_bound
TOGGLE ALL RUNS

g reward_bound
tag: reward_bound

30
28
26

24

a
DEE

reward_mean

Figure 55: Nice, it’s training!

33

7.3.

7.4.

Questions

. Why did the lab say that usually we allow the 90th percentile and above to pass

through, but in the actual implementation the 70th and above was used?

. What does it mean to “Convert to tensor”? You know... on that topic, what are

tensor cores?

. Who made the objective function? How is it calculating loss?

Random Thoughts

Wait, maybe this is dumb but what is the difference between a step and an action...?

I'm sure it’ll make more sense in a minute.

It’s not really easy to understand what iterate_batches does, even with help from GPT.
I mean on a very high level, it iterates through episodes until a batch is done and then
moves on. .. but there’s a lot of meat here.

34

UNDATED LOGBOOK | USED FOR FINAL PROJECT

b sizePolicy [Preferred, Preferred, 0, 0]
* minimumSize 640 x 480
Width 640
S gt w0
F maximumsize 16777215 x 16777215
scale

label : QLabel
Property Value

-

scaledContents v

joint
int
int
RR_joint

*, line 14, in <mo
inWindow

2024-10-25 15:43:04

OUTLINE ¥ eskynet 2024-10-25 15:57:47
TIMELINE
XN & A0 WO

Obviously the wheel diameter is wrong &5...

&
4y

UNDATED LOGBOOK | USED FOR FINAL PROJECT

OK SO | RESTARTED
Bro suggested i make a github

name=
nam

e file="$(find enph3

https://chatgpt.com/c/673f8a0e-cad0-800e-8832-a0466aa4d5b5

Crucial convo with GPT for future reference

3. Check CMakelLists.txt

Ensure your controller package's cMakeLists.txt file includes the necessary Qt5

components. Specifically, verify that the following lines are present:

cmake

Tind_package(Qt5 REQUIRED COMPONENTS Widgets)

Include Qt5 Widgets
set (CMAKE_AUTOMOC ON)
set (CMAKE_AUTORCC ON)
set (CMAKE_AUTOUIC ON)

include_directories(${Qt5Widgets_INCLUDE_DIRS})
add_definitions(${Qt5widgets_DEFINITIONS})

Add your executable
add_executable(controller_node src/controller_node.cpp)
target_link_libraries(controller_node ${catkin_LIBRARIES} Qt5::Widgets)

Aight so the cmake and package xml files needed to change for the Ul to work for some
| dont really understand what those do but its chill...

https://chatgpt.com/c/673f8a0e-cad0-800e-8832-a0466aa4d5b5

UNDATED LOGBOOK | USED FOR FINAL PROJECT

Now i got my wasd working no problem but i want it to be a little better, including make it so you
can press the wasd keys on my keyboard to make it work, and also i need them to only work

while pressed, rather than toggle on press...

UNDATED LOGBOOK | USED FOR FINAL PROJECT

UNDATED LOGBOOK | USED FOR FINAL PROJECT

UNDATED LOGBOOK | USED FOR FINAL PROJECT

VICTIM

LEBRAS

UNDATED LOGBOOK | USED FOR FINAL PROJECT

VICTIM

LEBRAS

UNDATED LOGBOOK | USED FOR FINAL PROJECT

UNDATED LOGBOOK | USED FOR FINAL PROJECT

UNDATED LOGBOOK | USED FOR FINAL PROJECT

HSV

226

179

255

auto-drive (on/off)

UNDATED LOGBOOK | USED FOR FINAL PROJECT

auto-drive (on/off)

TP1| |TP2| (TP3| |TP4| | TPS

HSV

174

179

91

255

UNDATED LOGBOOK | USED FOR FINAL PROJECT

10,10

UNDATED LOGBOOK | USED FOR FINAL PROJECT

fizzer@skynet:~ 2024-12-02 00:28:34

$ rosservice call /gazebo/get_model_state "{model_name: 'B1', relative_entity name: 'world"}"
header:

seq: 1

stamp:

secs: 100

nsecs: 452000000

frame_id: "world"

pose:

position:

UNDATED LOGBOOK | USED FOR FINAL PROJECT

x: 5.49942880783774

y: 2.504030700996579

z: 0.04000039797012949

orientation:

X: 7.377270669093508e-07

y: -4.3205541389025773e-07

z: -0.7090994033738673

w: 0.7051085279119056

twist:

linear:

x: -3.429385519482691e-07

y: -3.45936087976483e-05

z: -6.961205134532641e-08

angular:

x: -3.3675953025424427e-08

y: -1.695382569344429¢e-07

z: 2.0465679826048485e-07
success: True

status_message: "GetModelState: got properties"
fizzer@skynet:~ 2024-12-02 00:29:12
$

here's position one

fizzer@skynet:~ 2024-12-02 00:29:12

$ rosservice call /gazebo/get_model_state "{model_name: 'B1', relative_entity _name: 'world'}"

UNDATED LOGBOOK | USED FOR FINAL PROJECT

header:

seq: 2

stamp:

secs: 179

nsecs: 510000000

frame_id: "world"

pose:

position:

x: 5.3474887443153785

y: -0.9349569584188745

z: 0.04000037723629943
orientation:

x: 1.7321540120358244e-06
y: 8.610931097589084e-07
z: -0.814923731390067

w: 0.5795682117003553
twist:

linear:

x: -1.9867217578075866e-06
y: -3.4124615815287025e-06
z: -2.5248927044901413e-07
angular:

X: -1.1459745374714128e-06

y: 8.582504550650873e-08

UNDATED LOGBOOK | USED FOR FINAL PROJECT

z: 3.4741473200116976e-06
success: True

status_message: "GetModelState: got properties"
fizzer@skynet:~ 2024-12-02 00:30:31
$

heres position two

fizzer@skynet:~ 2024-12-02 00:30:31
$ rosservice call /gazebo/get_model_state "{model_name: 'B1', relative_entity _name: 'world'}"
header:

seq: 3

stamp:

secs: 226

nsecs: 396000000

frame_id: "world"

pose:

position:

x: 4.31305060031579

y: -1.3878525178704242

z: 0.04000050138909643

orientation:

X: 2.8548229122584364e-07

y: 5.904484287748461e-08

z: -0.9992515317144463

w: -0.038683024264505914

UNDATED LOGBOOK | USED FOR FINAL PROJECT

twist:

linear:

x: -4.6083482126018436e-05

y: 4.578524056041447e-06

z: -3.021915736653228e-07

angular:

x: -9.706895705051767e-07

y: -5.44937590917467e-07

z: -3.980972746240802e-06

success: True

status_message: "GetModelState: got properties"
fizzer@skynet:~ 2024-12-02 00:31:18
$

heres position three

fizzer@skynet:~ 2024-12-02 00:31:18
$ rosservice call /gazebo/get_model_state "{model_name: 'B1', relative_entity _name: 'world'}"
header:

seq: 4

stamp:

secs: 264

nsecs: 878000000

frame_id: "world"

pose:

position:

UNDATED LOGBOOK | USED FOR FINAL PROJECT

x: 0.6491008198665422

y: -0.9207976055506509

z: 0.04000053773996677

orientation:

x: 5.673153474413703e-07

y: 1.1238297852020603e-07

z: -0.6684896009764731

w: -0.7437214891247805

twist:

linear:

x: 3.6258892883050236e-05

y: 4.6779347039224744e-05

z: 0.0002147694215817508

angular:

x: 0.000118433678818386

y: -7.521498400007287e-05

z: 4.92834007489305e-05

success: True

status_message: "GetModelState: got properties"
fizzer@skynet:~ 2024-12-02 00:31:57
$

heres position 4

fizzer@skynet:~ 2024-12-02 00:31:57

$ rosservice call /gazebo/get_model_state "{model_name: 'B1', relative_entity _name: 'world'}"

UNDATED LOGBOOK | USED FOR FINAL PROJECT

header:

seq. 5

stamp:

secs: 302

nsecs: 346000000

frame_id: "world"

pose:

position:

x: 0.6689328884773375

y: 2.01851026363387

z: 0.04000094070292316
orientation:

x: -2.860153819036568e-06
y: 3.005876131366921e-06
z: 0.7085922122246099

w: -0.7056182230905165
twist:

linear:

x: -9.686719334696047e-09
y: -1.0315268016265393e-05
z: -2.2654604084937307e-08
angular:

x: 1.1899176535352882e-08

y: 2.2921365858617846e-07

UNDATED LOGBOOK | USED FOR FINAL PROJECT

z: 1.3864187333922176e-07
success: True

status_message: "GetModelState: got properties"
fizzer@skynet:~ 2024-12-02 00:32:35
$

here's position 5

fizzer@skynet:~ 2024-12-02 00:32:35
$ rosservice call /gazebo/get_model_state "{model_name: 'B1', relative_entity _name: 'world'}"
header:

seq: 6

stamp:

secs: 331

nsecs: 98000000

frame_id: "world"

pose:

position:

x: -3.0218217082015695

y: 1.5572375439630923

z: 0.03997891270315111

orientation:

x: -4.068919485243806e-05

y: -9.436718605393764e-05

z: 0.9984824087289902

w: 0.05507148897549148

UNDATED LOGBOOK | USED FOR FINAL PROJECT

twist:

linear:

x: -0.000986809555304847

y: -0.0014373767037252595
z:-0.012317697313816734

angular:

x: 0.0986408972496164

y: -0.04489834128880002

z: -0.0051109325794474

success: True

status_message: "GetModelState: got properties"
fizzer@skynet:~ 2024-12-02 00:33:04
$

heres position 6

fizzer@skynet:~ 2024-12-02 00:34:10
$ rosservice call /gazebo/get_model_state "{model_name: 'B1', relative_entity _name: 'world'}"
header:

seq: 8

stamp:

secs: 412

nsecs: 700000000

frame_id: "world"

pose:

position:

UNDATED LOGBOOK | USED FOR FINAL PROJECT

x: -4.301637175421005

y: -2.312349652507272

z: 0.03998563711874584

orientation:

X: -6.732302218612708e-06

y: 0.00012692216855302477

z: -0.05064239775258873

w: -0.9987168424510062

twist:

linear:

x: -0.0006081228219745929

y: -0.00021954653680757505

z: -0.00753131928801298

angular:

x: 0.012700679493104099

y: -0.12287423523921809

z: 0.001318436035590488

success: True

status_message: "GetModelState: got properties"
fizzer@skynet:~ 2024-12-02 00:34:25
$

heres position 7

fizzer@skynet:~ 2024-12-02 00:34:25

$ rosservice call /gazebo/get_model_state "{model_name: 'B1', relative_entity _name: 'world'}"

UNDATED LOGBOOK | USED FOR FINAL PROJECT

header:

seq: 1

stamp:

secs: 88

nsecs: 468000000

frame_id: "world"

pose:

position:

x: -1.2089846301463472

y: -1.186840844647

z: 1.8503400563324273
orientation:

x: -0.0057606116672731245
y: -0.013744051998107805
z: -0.0008294302102146539
w: -0.9998886080126218
twist:

linear:

x: 0.0017851634276949322
y: -0.0031014706121645142
z: -0.003942814968645114
angular:

x: 0.20511033665167425

y: -0.0014941832167760828

UNDATED LOGBOOK | USED FOR FINAL PROJECT

z: 0.004200353113679486

success: True

status_message: "GetModelState: got properties"
fizzer@skynet:~ 2024-12-02 00:46:17

$

heres position 8

fizzer@skynet:~/fizzcomp 2024-12-02 05:54:58

$ python3 -c "import tensorflow as tf; print('TensorFlow version:', tf. __version__)"

2024-12-02 05:57:18.495692: W tensorflow/stream_executor/platform/default/dso_loader.cc:64]
Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared
object file: No such file or directory; LD _LIBRARY_PATH:
/homef/fizzer/fizzcomp/devel/lib:/opt/ros/noetic/lib

2024-12-02 05:57:18.495714: | tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore
above cudart dlerror if you do not have a GPU set up on your machine.

TensorFlow version: 2.9.3

fizzer@skynet:~/fizzcomp 2024-12-02 05:57:22

$ python3 -c "import keras; print('Keras version:', keras.__version__)
2024-12-02 05:57:22.992055: W tensorflow/stream_executor/platform/default/dso_loader.cc:64]
Could not load dynamic library 'libcudart.so0.11.0"; dlerror: libcudart.so.11.0: cannot open shared
object file: No such file or directory; LD_LIBRARY_PATH:
/homef/fizzer/fizzcomp/devel/lib:/opt/ros/noetic/lib

2024-12-02 05:57:22.992093: | tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore
above cudart dlerror if you do not have a GPU set up on your machine.

Keras version: 2.9.0

fizzer@skynet:~/fizzcomp 2024-12-02 05:57:24

$

#!/usr/bin/env python3

import sys

import os

import rospkg

import rospy

from PyQt5 import QtWidgets, uic, QtCore, QtGui

UNDATED LOGBOOK | USED FOR FINAL PROJECT

from geometry_msgs.msg import Twist

from sensor_msgs.msg import Image

from cv_bridge import CvBridge, CvBridgeError
import cv2

import numpy as np

import datetime

from PyQt5.QtCore import pyqgtSignal

- New Imports -----

from gazebo_msgs.srv import SetModelState, SetModelStateRequest
from gazebo_msgs.msg import ModelState

#

class ControllerGUI(QtWidgets.QMainWindow):
Define a signal that carries the processed image and billCombo selection
image update_signal = pyqtSignal(np.ndarray, str)

def __init__(self):
super(ControllerGUI, self). _init_ ()

Initialize ROS node
rospy.init_node('controller_gui_node', anonymous=True)

Initialize CvBridge
self.bridge = CvBridge()

Get the path to the 'controller' package
rospack = rospkg.RosPack()
package_ path = rospack.get path('controller')

Construct the full path to 'developer_tools.ui'
ui_file = os.path.join(package_path, 'developer_tools.ui') # Adjust if it's in a subdirectory

Load the Ul file

if not os.path.exists(ui_file):
rospy.logerr(f"Ul file not found: {ui_file}")
sys.exit(1)

else:

uic.loadUi(ui_file, self)

Make movement buttons checkable
self.move_forward.setCheckable(True)
self.move_backward.setCheckable(True)

UNDATED LOGBOOK | USED FOR FINAL PROJECT

self. move_left.setCheckable(True)
self.move_right.setCheckable(True)

Set 'Raw' as the default option in mainCombo
index = self.mainCombo.findText("Raw")

if index 1= -1:
self.mainCombo.setCurrentindex(index)

Set 'Raw' as the default option in billCombo
bill_index = self.billCombo.findText("Raw")

if bill_index !=-1:
self.billCombo.setCurrentindex(bill_index)

Set up publishers
self.pub_cmd_vel = rospy.Publisher('/B1/cmd_vel', Twist, queue_size=10)

Connect Ul elements to functions
self.move_forward.clicked.connect(self.toggle_move_forward)
self.move_backward.clicked.connect(self.toggle_move_backward)
self.move_left.clicked.connect(self.toggle _move_left)
self.move_right.clicked.connect(self.toggle_move_right)

self.auto_drive toggle.clicked.connect(self.auto_drive toggle function)
self.savelmage.clicked.connect(self.save_image_function)

Initialize set to keep track of pressed keys
self.pressed_keys = set()

Movement flags controlled by buttons
self.button_move_forward = False
self.button_move backward = False
self.button_move_left = False
self.button_move_right = False

Start a timer to call publish_movement at regular intervals
self.timer = QtCore.QTimer()
self.timer.timeout.connect(self.publish_movement)
self.timer.start(100) # Every 100 ms (10 Hz)

Subscribe to the image topic
self.image _sub = rospy.Subscriber('/B1/rrbot/camera1/image_raw', Image,
self.image_callback)

Connect the image update signal to the update_billboard slot
self.image_update_signal.connect(self.update_billboard)

UNDATED LOGBOOK | USED FOR FINAL PROJECT

Ensure the window can accept focus and receive key events
self.setFocusPolicy(QtCore.Qt.StrongFocus)

Default HSV bounds
self.lower_color = np.array([0, 0, 174])
self.upper_color = np.array([179, 91, 255])

Set default slider values for lower bounds
self.hSlider.setMinimum(0)
self.hSlider.setMaximum(179)
self.hSlider.setValue(self.lower_color[0])
self.sSlider.setMinimum(0)
self.sSlider.setMaximum(255)
self.sSlider.setValue(self.lower_color[1])
self.vSlider.setMinimum(0)
self.vSlider.setMaximum(255)
self.vSlider.setValue(self.lower_color[2])

Set default slider values for upper bounds
self.hSlider_2.setMinimum(0)
self.nSlider_2.setMaximum(179)
self.hSlider_2.setValue(self.upper_color[0])
self.sSlider_2.setMinimum(0)
self.sSlider_2.setMaximum(255)
self.sSlider_2.setValue(self.upper_color[1])
self.vSlider_2.setMinimum(0)
self.vSlider_2.setMaximum(255)
self.vSlider_2.setValue(self.upper_color[2])

Update labels with default slider values
self.hText.setText(str(self.hSlider.value())
self.sText.setText(str(self.sSlider.value())
self.vText.setText(str(self.vSlider.value()))

self.hText_2.setText(str(self.hSlider_2.value()))
self.sText_2.setText(str(self.sSlider_2.value()))
self.vText_2.setText(str(self.vSlider_2.value()))

_

Connect sliders to their respective update functions

self.hSlider.valueChanged.connect(self.update_hText)
self.sSlider.valueChanged.connect(self.update_sText)
self.vSlider.valueChanged.connect(self.update_vText)

UNDATED LOGBOOK | USED FOR FINAL PROJECT

self.hSlider_2.valueChanged.connect(self.update_hText_2)
self.sSlider_2.valueChanged.connect(self.update_sText 2)
self.vSlider_2.valueChanged.connect(self.update_vText_2)

-—-- New Section: Define Teleport Positions -----
self.teleport_positions = {

TP1": {

'position”: {'x": 5.49942880783774, 'y": 2.504030700996579, 'z"

0.04000039797012949%},

‘orientation’: {'x": 7.377270669093508e-07, 'y": -4.3205541389025773e-07, 'z".

-0.7090994033738673, 'w'": 0.7051085279119056}

b
"TP2": {

'position": {'x": 5.3474887443153785, 'y": -0.9349569584188745, 'z".

0.04000037723629943},

'orientation"; {'x": 1.7321540120358244¢-06, 'y": 8.610931097589084e-07, 'z".

-0.814923731390067, 'w": 0.5795682117003553}

b
"TP3"{

'position”: {'x": 4.31305060031579, 'y": -1.3878525178704242, 'z":

0.04000050138909643},

‘orientation’: {'x": 2.8548229122584364e-07, 'y': 5.904484287748461e-08, 'z"

-0.9992515317144463, 'w'": -0.038683024264505914}

b
TP4" {

'position”: {'x": 0.6491008198665422, 'y": -0.9207976055506509, 'z".

0.04000053773996677},

‘orientation’: {'x": 5.673153474413703e-07, 'y": 1.1238297852020603e-07, 'Z".

-0.6684896009764731, 'w'": -0.7437214891247805}

b
"TP5" {

'position": {'x": 0.6689328884773375, 'y": 2.01851026363387, 'z"

0.04000094070292316},

‘orientation’: {'x": -2.860153819036568e-06, 'y": 3.005876131366921e-06, 'z".

0.7085922122246099, 'w'": -0.7056182230905165}

b
'TP6": {

‘position”: {'x": -3.0218217082015695, 'y": 1.5572375439630923, 'z".

0.03997891270315111},

‘orientation’: {'x": -4.068919485243806e-05, 'y": -9.436718605393764e-05, 'z"

0.9984824087289902, 'w". 0.05507148897549148}

}

UNDATED LOGBOOK | USED FOR FINAL PROJECT

TP7" {
'position”: {'x": -4.301637175421005, 'y": -2.312349652507272, 'z".
0.03998563711874584},
‘orientation’: {'x": -6.732302218612708e-06, 'y": 0.00012692216855302477, 'z".
-0.05064239775258873, 'w'": -0.9987168424510062}
}
"TP8": {
‘position": {'x": -1.2089846301463472, 'y": -1.186840844647, 'z".
1.8503400563324273},
‘orientation’: {'x": -0.0057606116672731245, 'y": -0.013744051998107805, 'z".
-0.0008294302102146539, 'w'": -0.9998886080126218}

- New Section: Set Up Teleport Service Proxy -----

rospy.loginfo("Waiting for /gazebo/set_model_state service...")

rospy.wait_for_service('/gazebo/set_model_state')

try:

self.set_model_state service = rospy.ServiceProxy('/gazebo/set_model_state’,
SetModelState)

rospy.loginfo("/gazebo/set_model_state service is available.")

except rospy.ServiceException as e:

rospy.logerr(f'Service initialization failed: {e}")

sys.exit(1)

- End of New Section -----

- New Section: Connect TP Buttons to Teleport Functions -----
self. TP1.clicked.connect(lambda: self.teleport_to_position('TP1')
self. TP2.clicked.connect(lambda: self.teleport_to position('TP2')
self. TP3.clicked.connect(lambda: self.teleport_to_position('TP3')
self. TP4.clicked.connect(lambda: self.teleport_to_position("TP4")
self. TP5.clicked.connect(lambda: self.teleport_to position('TP5')
self. TP6.clicked.connect(lambda: self.teleport_to_position("TP6')
self. TP7.clicked.connect(lambda: self.teleport_to position('TP7")
self. TP8.clicked.connect(lambda: self.teleport_to_position('TP8')
- End of New Section -----

— ~— ~— ~— ~— ~— ~— ~—

- New Section: Teleport Function -----
def teleport_to_position(self, tp_name):

Teleports the robot to the specified TP position.

:param tp_name: String name of the TP button (e.g., 'TP1", 'TP2', ...)

UNDATED LOGBOOK | USED FOR FINAL PROJECT

if tp_name not in self.teleport_positions:
rospy.logerr(f"Teleport position '{tp_name}' not defined.")
return

position = self.teleport_positions[tp_name]['position']
orientation = self.teleport_positions[tp_name]['orientation’]

Create a ModelState message

model_state = ModelState()

model_state.model_name = 'B1' # Ensure this matches your robot's model name in
Gazebo

model_state.pose.position.x = position['x']

model_state.pose.position.y = position['y']

model_state.pose.position.z = position['z']

model_state.pose.orientation.x = orientation['x']

model_state.pose.orientation.y = orientation['y']

model_state.pose.orientation.z = orientation['z']

model_state.pose.orientation.w = orientation['w']

model_state.reference_frame = 'world' # Relative to the 'world' frame

Create the service request
set_state_request = SetModelStateRequest()
set_state request.model_state = model_state

try:
Call the service to set the model state
response = self.set_model_state service(set_state_request)
if response.success:
rospy.loginfo(f"Successfully teleported to {tp_name}.")
else:
rospy.logerr(f"Failed to teleport to {tp_name}: {response.status_message}")
except rospy.ServiceException as e:
rospy.logerr(f'Service call failed: {e}")
- End of New Section -----

- Existing Methods Below -----

def toggle_move_forward(self):

self.button_move_forward = self.move_forward.isChecked()

if self.button_move_forward:
self.move_forward.setStyleSheet("background-color: green")

else:

self.move_forward.setStyleSheet(")

rospy.loginfo(f"Move Forward: {'On' if self.button_move_forward else 'Off'}")

UNDATED LOGBOOK | USED FOR FINAL PROJECT

def toggle_move_backward(self):

self.button_move_backward = self.move_backward.isChecked()

if self.button_move backward:
self.move_backward.setStyleSheet("background-color: green")

else:

self.move backward.setStyleSheet(")

rospy.loginfo(f"Move Backward: {'On' if self.button_move_backward else 'Off'}")

def toggle_move_left(self):

self.button_move_left = self.move_left.isChecked()

if self.button_move_left:
self.move_left.setStyleSheet("background-color: green")

else:

self.move_left.setStyleSheet("")

rospy.loginfo(f"Move Left: {'On' if self.button_move_left else 'Off'}")

def toggle_move_right(self):

self.button_move_right = self.move_right.isChecked()

if self.button_move_right:
self.move_right.setStyleSheet("background-color: green")

else:

self.move_right.setStyleSheet("")

rospy.loginfo(f"Move Right: {'On' if self.button_move_right else 'Off'}")

Keyboard event handlers

def keyPressEvent(self, event):

if not event.isAutoRepeat():

key = event.key()

if key in [QtCore.Qt.Key W, QtCore.Qt.Key A, QtCore.Qt.Key S, QtCore.Qt.Key D]:
self.pressed_keys.add(key)
rospy.logdebug(f'Key Pressed: {QtCore.Qt.keyToString(key)}")

def keyReleaseEvent(self, event):

if not event.isAutoRepeat():

key = event.key()

if key in [QtCore.Qt.Key_W, QtCore.Qt.Key A, QtCore.Qt.Key_S, QtCore.Qt.Key_D]:
self.pressed_keys.discard(key)
rospy.logdebug(f"Key Released: {QtCore.Qt.keyToString(key)}")

Function to publish movement commands
def publish_movement(self):
twist = Twist()

UNDATED LOGBOOK | USED FOR FINAL PROJECT

Keyboard-controlled movement

if QtCore.Qt.Key_W in self.pressed_keys:
twist.linear.x += 5.0 # Move forward

if QtCore.Qt.Key_S in self.pressed_keys:
twist.linear.x -= 5.0 # Move backward

if QtCore.Qt.Key_A in self.pressed_keys:
twist.angular.z += 3.0 # Turn left

if QtCore.Qt.Key D in self.pressed_keys:
twist.angular.z -= 3.0 # Turn right

Button-controlled movement
if self.button_move_forward:
twist.linear.x += 1.0

if self.button_move_backward:
twist.linear.x -= 1.0

if self.button_move_left:
twist.angular.z += 1.0

if self.button_move_right:
twist.angular.z -= 1.0

Publish the twist message
self.pub_cmd_vel.publish(twist)
rospy.logdebug(f"Published Twist: linear.x={twist.linear.x}, angular.z={twist.angular.z}")

def save_image_function(self):

Saves the current image displayed on the billboard QLabel to a file.

try:
Retrieve the current pixmap from the billboard
pixmap = self.billboard.pixmap()
if pixmap:
Get the path to the 'controller' package
rospack = rospkg.RosPack()
package_path = rospack.get path(‘controller')

Define the directory to save images
save_dir = os.path.join(package_path, 'saved_images')
os.makedirs(save_dir, exist_ok=True) # Create directory if it doesn't exist

Generate a timestamped filename

timestamp = datetime.datetime.now().strftime("%Y %m%d_%H%M%S")
filename = f"billboard_{timestamp}.png"

file_path = os.path.join(save_dir, filename)

UNDATED LOGBOOK | USED FOR FINAL PROJECT

Save the pixmap to the file
if not pixmap.save(file_path):
rospy.logerr(f"Failed to save image to {file_path}")
else:
rospy.loginfo(f"lmage saved to {file_path}")
else:
rospy.logwarn("No image to save on the billboard.")
except Exception as €:
rospy.logerr(f"Error saving image: {e}")

def auto_drive_toggle_ function(self):
Implement
pass

Helper function to outline the largest contour on a binary image

def outline_largest_contour(self, binary_image):

contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)

if not contours:

return None # No contours found

Find the largest contour by area
largest_contour = max(contours, key=cv2.contourArea)

Draw the largest contour on the binary image

outlined_image = binary_image.copy()

cv2.drawContours(outlined_image, [largest_contour], -1, 255, 2) # White color
(thickness 2)

return outlined_image

Helper function to perform inverse perspective transform

def inverse_perspective_transform(self, outlined_image):

contours, _ = cv2.findContours(outlined_image, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)

if not contours:

return None # No contours found

Find the largest contour by area
largest_contour = max(contours, key=cv2.contourArea)

Approximate the contour to a polygon
peri = cv2.arcLength(largest_contour, True)

UNDATED LOGBOOK | USED FOR FINAL PROJECT

approx = cv2.approxPolyDP(largest_contour, 0.01 * peri, True) # 2% approximation

if len(approx) != 4:

Not a quadrilateral; cannot perform perspective transform

rospy.logwarn("Largest contour is not a quadrilateral. Skipping perspective transform.")
return None

Order the points in consistent order: top-left, top-right, bottom-right, bottom-left
pts = approx.reshape(4, 2)
rect = self.order_points(pts)

Compute the width and height of the new image
(tl, tr, br, bl) = rect

widthA = np.linalg.norm(br - bl)

widthB = np.linalg.norm(tr - tl)

maxWidth = max(int(widthA), int(widthB))

heightA = np.linalg.norm(tr - br)
heightB = np.linalg.norm(tl - bl)
maxHeight = max(int(heightA), int(heightB))

Destination points for the perspective transform
dst = np.array([

[0, 0],

[maxWidth - 1, 0],

[maxWidth - 1, maxHeight - 1],

[0, maxHeight - 1]

], dtype="float32")

Compute the perspective transform matrix
M = cv2.getPerspectiveTransform(rect, dst)

Apply the perspective transform
warped = cv2.warpPerspective(outlined_image, M, (maxWidth, maxHeight))

return warped

Helper function to order points

def order_points(self, pts):

Initialize a list of coordinates that will be ordered
rect = np.zeros((4, 2), dtype="float32")

Sum and difference to find top-left and bottom-right
s = pts.sum(axis=1)

UNDATED LOGBOOK | USED FOR FINAL PROJECT

diff = np.diff(pts, axis=1)

rect[0] = pts[np.argmin(s)] # Top-left
rect[2] = pts[np.argmax(s)] # Bottom-right
rect[1] = pts[np.argmin(diff)] # Top-right
rect[3] = pts[np.argmax(diff)] # Bottom-left

return rect

def image_callback(self, msg):
Process mainfeed based on mainCombo selection
main_selection = self.mainCombo.currentText()

if main_selection == "Raw":
try:
Convert ROS Image message to OpenCV image
cv_image = self.bridge.imgmsg_to _cv2(msg, desired_encoding="bgr8')

Convert the image to RGB format
cv_image _rgb = cv2.cvtColor(cv_image, cv2.COLOR_BGR2RGB)

Get image dimensions
height, width, channel = cv_image_rgb.shape
bytes_per_line = 3 * width

Convert to Qlmage for mainfeed
qt_image = QtGui.Qlmage(cv_image_rgb.data, width, height, bytes_per_line,
QtGui.Qlmage.Format_RGB888)

Scale the image to fit the QLabel while maintaining aspect ratio
scaled_image = gt_image.scaled(self.mainfeed.size(),
QtCore.Qt.KeepAspectRatio, QtCore.Qt.SmoothTransformation)

Set the pixmap of the QLabel
self.mainfeed.setPixmap(QtGui.QPixmap.fromimage(scaled_image))

except CvBridgeError as e:
rospy.logerr(f"CvBridge Error: {e}")

elif main_selection == "HSV":

try:
Retrieve current HSV bounds from sliders
lower_h = self.hSlider.value()
lower_s = self.sSlider.value()

UNDATED LOGBOOK | USED FOR FINAL PROJECT

lower_v = self.vSlider.value()

upper_h = self.hSlider_2.value()
upper_s = self.sSlider_2.value()
upper_v = self.vSlider_2.value()

Update lower and upper color arrays
lower_color = np.array([lower_h, lower_s, lower_v])
upper_color = np.array([upper_h, upper_s, upper_v])

Convert ROS Image message to OpenCV image
cv_image = self.bridge.imgmsg_to_cv2(msg, desired_encoding="bgr8')

Convert the image to HSV color space
hsv_image = cv2.cvtColor(cv_image, cv2.COLOR_BGR2HSV)

Create a binary mask where the target color is white and the rest is black
mask = cv2.inRange(hsv_image, lower_color, upper_color)

Apply morphological operations to remove noise and smooth the mask
kernel = np.ones((1, 10), np.uint8)

mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations=2)
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=2)

Display the processed mask
processed_image_display = mask

Convert processed image to Qlmage for display

height, width = processed_image_display.shape

bytes_per_line = width

gt_image = QtGui.Qlmage(processed_image_display.data, width, height,
bytes_per_line, QtGui.QImage.Format_Grayscale8)

Scale the image to fit the mainfeed QLabel while maintaining aspect ratio
scaled_image = gqt_image.scaled(self.mainfeed.size(),
QtCore.Qt.KeepAspectRatio, QtCore.Qt.SmoothTransformation)

Set the pixmap of the mainfeed QLabel
self.mainfeed.setPixmap(QtGui.QPixmap.fromimage(scaled_image))

except CvBridgeError as e:
rospy.logerr(f"CvBridge Error: {e}")

else:
rospy.logwarn(f"Unknown mainCombo selection: {main_selection}")

UNDATED LOGBOOK | USED FOR FINAL PROJECT

Optionally, handle other cases or default behavior

Process billboard based on billCombo selection
bill_selection = self.billCombo.currentText()

try:
Convert ROS Image message to OpenCV image
cv_image = self.bridge.imgmsg_to_cv2(msg, desired_encoding="bgr8')

Convert the image to HSV color space
hsv_image = cv2.cvtColor(cv_image, cv2.COLOR_BGR2HSV)

Define the lower and upper bounds for the target color (e.g., blue)
lower_color_bill = np.array([100, 120, 0])
upper_color_bill = np.array([140, 255, 255])

Create a binary mask where the target color is white and the rest is black
mask = cv2.inRange(hsv_image, lower_color_bill, upper_color_bill)

Apply morphological operations to remove noise and smooth the mask
kernel = np.ones((1, 1), np.uint8)

mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations=2)
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=2)

Initialize variables
processed_image = mask.copy() # Start with the cleaned binary image
quadrilateral_found = False # Flag for billboard indicator

if bill_selection == "Raw":
Display the cleaned binary image directly
processed_image_display = mask

elif bill_selection == "Contour":
Outline the largest quadrilateral contour on the cleaned binary image
outlined_image = self.outline_largest contour(mask)
if outlined_image is not None:
processed_image_display = outlined_image
else:
processed_image_display = mask

elif bill_selection == "Homography":
Outline the largest quadrilateral contour on the cleaned binary image
outlined_image = self.outline_largest_contour(mask)
if outlined_image is not None:

UNDATED LOGBOOK | USED FOR FINAL PROJECT

Attempt inverse perspective transform

warped_image = self.inverse_perspective_transform(outlined_image)
if warped_image is not None:

processed_image_display = warped_image

quadrilateral_found = True # IPT successful

else:

processed_image_display = outlined_image

else:

processed_image_display = mask

else:
rospy.logwarn(f"Unknown billCombo selection: {bill_selection}")
processed_image_display = mask

Emit the signal with the processed image and bill selection
self.image_update_signal.emit(processed_image_display, bill_selection)

except CvBridgeError as e:
rospy.logerr(f"CvBridge Error: {e}")

@QtCore.pyqtSlot(np.ndarray, str)

def update_billboard(self, processed_image_display, bill_selection):

Convert processed image to Qlmage for display

if len(processed_image_display.shape) == 2:

Grayscale image

height, width = processed_image_display.shape

bytes per_line = width

gt_image = QtGui.Qlmage(processed_image_display.data, width, height, bytes_per_line,
QtGui.Qlmage.Format_Grayscale8)

else:

Color image (warped_image should be color if IPT was successful)

processed_image_rgb = cv2.cvtColor(processed_image_display,
cv2.COLOR_BGR2RGB)

height, width, channel = processed_image_rgb.shape

bytes_per_line = 3 * width

gt_image = QtGui.Qlmage(processed_image_rgb.data, width, height, bytes_per_line,
QtGui.Qlmage.Format_RGB888)

Scale the image to fit the billboard QLabel while maintaining aspect ratio
scaled_image = gt_image.scaled(self.billboard.size(), QtCore.Qt.KeepAspectRatio,
QtCore.Qt.SmoothTransformation)

Set the pixmap of the billboard QLabel
self.billboard.setPixmap(QtGui.QPixmap.fromimage(scaled_image))

UNDATED LOGBOOK | USED FOR FINAL PROJECT

- Added Section: Slider Update Functions -----
def update_hText(self, value):
self.nText.setText(str(value))

def update_sText(self, value):
self.sText.setText(str(value))

def update_vText(self, value):
self.vText.setText(str(value))

def update _hText 2(self, value):
self.hText_2.setText(str(value))

def update _sText 2(self, value):
self.sText_2.setText(str(value))

def update_vText 2(self, value):

self.vText_2.setText(str(value))

- End of Added Section -----
if _name__==' main__"

Initialize ROS node in the main thread if not already initialized

if not rospy.core.is_initialized():

rospy.init_node(‘controller_gui_node', anonymous=True)

app = QtWidgets.QApplication(sys.argv)
window = ControllerGUI()
window.show()

try:

sys.exit(app.exec_())

except rospy.ROSInterruptException:
Pass

TP TIME

‘E
END BOARD
fizzer@skynet:~ 2024-12-03 20:13:11
$ rosservice call /gazebo/get_model_state "{model _name: 'B1', relative_entity name: 'world"}"
header:

seq: 1

stamp:

secs: 208

UNDATED LOGBOOK | USED FOR FINAL PROJECT

nsecs: 170000000
frame_id: "world"
pose:
position:
x: -4.063470518828452
y: -2.2564473800170513
z: 0.04000018393550679
orientation:
x: -2.000162652701596e-07
y: -5.830896379528323e-07
z:-0.3377707635826839
w: -0.9412284054725457
twist:
linear:
x: 7.2973450851087e-06
y: 5.8943899099516665e-06
z: -8.164412211317728e-08
angular:
x: 1.5344223329651384e-07
y: 1.4127334378487544e-07
z: -9.24432881558964e-07
success: True
status_message: "GetModelState: got properties"
fizzer@skynet:~ 2024-12-03 20:13:14
$

Start:

fizzer@skynet:~ 2024-12-03 20:13:14
$ rosservice call /gazebo/get_model_state "{model _name: 'B1', relative_entity name: 'world"}"
header:
seq: 2
stamp:
secs: 376
nsecs: 58000000
frame_id: "world"
pose:
position:
x: 0.5527487156990568
y: -0.12600472106246535
z: 0.04000056025622947
orientation:
X: 2.448884472570069e-07
y: 1.278603394462025e-07

UNDATED LOGBOOK | USED FOR FINAL PROJECT

z:-0.7071178631556455
w: -0.7070956990437133
twist:
linear:
x: 8.116451582490024e-07
y: 6.492124274429354e-05
z:-3.323202547936527e-07
angular:
X: -2.427257071260534e-06
y: 1.283560883718495e-06
z:-5.485636227147017e-06
success: True
status_message: "GetModelState: got properties"
fizzer@skynet:~ 2024-12-03 20:16:03
$

Middle:

fizzer@skynet:~ 2024-12-03 20:16:03
$ rosservice call /gazebo/get_model_state "{model_name: 'B1', relative_entity _name: 'world'}"
header:
seq: 3
stamp:
secs: 437
nsecs: 758000000
frame_id: "world"
pose:
position:
x: -4.008629252948557
y: 0.4038460916553116
z: 0.04000060474749287
orientation:
X: 7.154773655035404e-07
y: -1.501085552816514e-06
z:-0.4271649858420221
w: -0.9041736972882035
twist:
linear:
X: 2.3543821966816424e-05
y: 2.572388113532436e-05
z: -6.195886853266245e-07
angular:

UNDATED LOGBOOK | USED FOR FINAL PROJECT

x: 2.739456085130211e-06

y: -9.326830447456623e-09

z: 6.524870489909662e-06
success: True
status_message: "GetModelState: got properties"
fizzer@skynet:~ 2024-12-03 20:17:05

