
Contents

1 Date: September 11th, 2024 2

1.1 Goal: Line Detection From Video . 2

1.2 Process . 2

1.3 Questions . 6

1.4 Random Thoughts . 6

2 Date: September 18th, 2024 6

2.1 Goal: ROS robot line following . 6

2.2 Process . 6

2.3 Questions . 12

2.4 Random Thoughts . 13

3 Date: October 1st, 2024 13

3.1 Goal: GUI and tracking using SIFT . 13

3.2 Process . 13

3.3 Questions . 20

3.4 Random Thoughts . 21

4 Date: October 8th, 2024 21

4.1 Goal: Build a neural network from scratch 21

4.2 Process . 21

4.3 Questions . 22

5 Date: October 15th, 2024 23

5.1 Goal: Character recognition from images . 23

5.2 Process . 23

5.3 Questions . 30

6 Date: October 29th, 2024 30

6.1 Goal: In sim line following using RL . 30

6.2 Process . 30

6.3 Questions . 31

7 Date: November 5th, 2024 31

7.1 Goal: Cross-entropy inverted pendulum balancer 31

7.2 Process . 31

7.3 Questions . 34

7.4 Random Thoughts . 34

1

1. Date: September 11th, 2024

1.1. Goal: Line Detection From Video

Figure out Lab 2 as well as what the format of this logbook is going to be. Bear with me

while I figure out a style. . .

1.2. Process

1. I started by trying to follow the Lab 2 Google Colab setup. I got confused when it

said “You can download GitHub repos in your Colab instance and run code here.” I’m

not sure if that’s useful today.

Figure 1: Must update path

2. Then I changed this PATH to .../My Drive/ENPH353 because that’s where my stuff

is. . . Ran the cell, it worked fine.

3. I realized I was being dumb and I need to make a new blank colab. . .

4. Time to stop and think for a second:

(a) First I want to be able to take images from the video they gave us

(b) I want to be able to read pixels at a fixed height in the images

(c) How do I tell the difference between pixel intensities in OpenCV?

(d) Do I need to create a mask?

(e) I want to be able to tell the difference between the road and the rest of the video

(f) Then I want to find the middle of the road and draw a red dot on it

(g) I do that for every single frame and re-export a new video

5. I asked GPT this:

2

Figure 2: Secrets to screenshotting unlocked

Now I can screenshot pretty easily.

6. I asked ChatGPT how to upload a file to my Colab. It told me:

Figure 3: Well that was easy enough

7. I asked ChatGPT how to get frames from the video:

Figure 4: Extracting still frames from a video

This looked a lil strange because earlier it told me to refer to the video as uploaded and

now I’m already specifying the file name. . . what does this mean? Find out soon. . .

3

Figure 5: Oh neat you can upload into code blocks in colab

8. I see that the video is called "raw video feed.mp4" so I’m guessing that’s what I’m

supposed to replace it with. . . Worked.

9. ChatGPT went off when I asked it to code the pipeline for me, so I asked it to explain

everything like I’m 5. . . stay tuned.

Figure 6: Sample implementation for the lab

4

10. This was a massive output of its process of placing a red dot in the middle of a road. . .

however it’s definitely flawed, because it’s creating a contour “box” around the road,

instead of just reading the value of the bottom. . . If you try and run this you will get

frames that have the red dot way off the path.

11. The next stage is to make it better! I asked it to explain what the box idea was and

it actually made sense, I also asked it to show me a sample of a frame being processed

and it gave me this:

Figure 7: What the...

Now. . . I know this looks weird. The contour is way too high. . . I think it’s just an issue

5

with my plotting (not the contour being in the wrong area). I tried for a long time to figure

out how to bring it down. . . didn’t succeed.

12. I asked GPT to help me smoothen the red dot, it created a sliding window of center

values that updates (to a limit of 3 values) as the video keeps playing.

13. I asked for comments and then I put everything into Colab with some comments and

text to explain each stage.

14. Submit!

1.3. Questions

1. How do I get multiple perspectives so I can perform a perspective transform?

2. Why am I using Colab for a project that uses OpenCV?

3. Why isn’t my contour plot where it should be?

4. What are other ways to do this?

5. How come my red dot doesn’t follow the road when it starts bending weird?

1.4. Random Thoughts

• If you’re always trying to say the right things, your whole life is a test [heard this one

from Kanye a long time ago].

• Miti says we’re at an inflection point in society, I wonder how many times people have

said that before about their respective time.

• This is like being thirsty and the only thing you have is a fire hose.

2. Date: September 18th, 2024

2.1. Goal: ROS robot line following

To get a robot simulation run in ROS and to have it line follow a path in the environment.

2.2. Process

1. I realize I never downloaded Python so I’m going to do that now. . .

$ sudo snap install code --classic

Found this from the Lab 1 document Miti created.

6

2. Apparently it was already installed. . . okay

3. I downloaded an extension called Doxygen Documentation Generator

4. I just made a new directory and launched an instance of ROS

Figure 8: First time sourcing

5. Lowkey this part makes sense, putting it in the process because it kind of clarifies

question 2.

6. I ran step 1.6 and got an output that I didn’t really understand so I asked ChatGPT

if it understood whether or not the command was successful.

Figure 9: Slowly starting to understand the terminal

7. Cloned Miti’s repo into the new directory I made

8. I opened the repo in VS Code and now I’m trying to find how to replace the visual

component of the track with a png (monza.png)

7

Figure 10: Editing the simulation

9. Found it and replaced it.

10. I created a new launch directory, but it broke briefly so I asked GPT why, it was

because I didn’t have launch flags around my includes. Miti also taught me about

ROS security, and how we need to make sure we reference the directory even when

we’re already in it if we want to run a file.

Figure 11: These are the kinds of prompts I used a lot during this class

11. I accidentally zoomed way the hell out. . . I have no idea how to get back.

8

Figure 12: Dear god...

12. NOT HELPFUL!!!!

Figure 13: ChatGPT could not save me... I grieve

13. Okay. . . Check In one complete:

9

Figure 14: Check point!!!

14. I included the robot launch in the launch file

15. Robot obtained. . .

Figure 15: Now you can see the robot on the map

16. I asked GPT to give me a simpler version of the camera plugin found here: http:

10

http://classic.gazebosim.org/tutorials?tut=ros_gzplugins
http://classic.gazebosim.org/tutorials?tut=ros_gzplugins

//classic.gazebosim.org/tutorials?tut=ros_gzplugins

17. I also pasted the skid steering from the same link into my robot.xacro

Figure 16: Editing xacro files! We are learning

18. Came across a very strange bug where ros env kept crashing, I just restarted my pc

and all was well afterwards. . . weird

19. I ran rosrun rqt image view rqt image view which unfortunately just gave me this. . .

something is wrong

Figure 17: Can’t see the simulation space :(

20. I think it has something to do with the simplified camera plug-in I asked GPT to make

me so I’m trying the raw one from the same link in step 16.

21. Unfortunately that was not the issue. . . hmm

11

http://classic.gazebosim.org/tutorials?tut=ros_gzplugins
http://classic.gazebosim.org/tutorials?tut=ros_gzplugins

22. Great news, it was an issue with the rosrun command given to us, GPT told me to

try:

rosrun image view image view image:=/rrbot/camera1/image raw

and it worked.

23. Next up:

rostopic pub /cmd_vel geometry_msgs/Twist "linear:

x: 0.0

y: 0.0

z: 0.0

angular:

x: 0.0

y: 0.0

z: 1.0"

I ran the above in a new terminal with gazebo open and my robot started spinning.

Interestingly enough even after terminating the terminal. . . bro’s still spinning.

24. Now I’m following steps GPT is helping me for the implementation of the line following.

The first thing it told me to do was nuke my packages. . . I am listening blindly.

25. Basically all it did was create the python file with the code, but the threshold was way

too high

26. Also it created a new launch file called line follower.launch

27. I don’t really understand how it created publishers and subscribers yet, will have to

do that tomorrow. . .

28. It basically one shot the whole lab and I just followed instructions and did code review

extensively later.

2.3. Questions

1. Why does it matter that I source the ROS workspace?

2. What is going on with the alias section? Why am I appending stuff to the file instead

of somewhere else? Is it because the bash file I created is like the base file that has

everything we need?

3. Wonder what Mark Twain meant by his “truth is stranger than fiction” quote.

12

2.4. Random Thoughts

• What if I just take the lab and turn it into step-by-step instructions for me to complete

(point and click adventure game pretty much. . .)

• Miti just said make sure your real time factor is the same on different computers where

you are testing integration - pretty sure that’ll become very important later

• Seems like I’m not controlling the robot’s physics at all which is nice. . . I was a little

scared about that initially, I’m just sending messages using topics.

3. Date: October 1st, 2024

3.1. Goal: GUI and tracking using SIFT

To get a working SIFT algo going.

3.2. Process

1. Opened Qt Designer

2. It begins...

Figure 18: First thing you are greeted with in QT5

13

3. Add stuff!

Figure 19: Adding labels and pushbuttons

4. Window tells you what objects you have in your UI

Figure 20: Object Inspector on top right

5. For both labels:

14

Figure 21: Adjusting size for the labels

6. More adjustments - you can change names too

Figure 22: Changing window name to SIFT Demo

7. Make sure your python file is executable!

15

Figure 23: Changing permissions using chmod in bash

8. Pasted the code into the python file we were told to make, ran it, got this:

Figure 24: UI pops up when you run the python file

9. Threw this in, tweaked the indentation

16

Figure 25: Provided code for giving buttons functionality

10. Check the camera IDs

Figure 26: Two available cameras

11. Watch out for tabs and spaces in python. . .

12. Pasted the full code given to us in lab 4

13. Taking a break... I have classes now. Will come back and watch videos / use GPT to

help me code the SIFT algo.

14. Great I got a basic mapping of keyPoints working, took a little video and posted it on

instagram :p

15. I asked ChatGPT to help me draw the links between keypoints

16. Making a new directory where I can get GPT to help out

17

Figure 27: Creating a duplicate where I can mess around

17. Prompting GPT to help me out with getting the UI-camera integration nice

Figure 28: Trying to get help with the layout

18. Currently my camera is blocked by the image it’s comparing to (lil robot guy not so

lil), I asked gpt to help out and also plot the homography

19. Didn’t work very well, very gross implementation - tried this instead:

18

Figure 29: The prompt I used to try again

20. This is so funny what the???

Figure 30: Absolutely failed

21. Im crying of laughter

19

Figure 31: It failed again this is so funny why am I off the screen entirely

22. Its so buggy, can’t wait to ask for help tomorrow

23. It works though!!! Submitting this because it meets the requirements but needs slight

improvements which I need help with hahaaaa.

Figure 32: Homography works!

3.3. Questions

1. Why is python so sensitive?

2. Why did the image stretch?

3. How do I make it so the UI allows me to have the keypoints matched without eating

up 80% of my camera space?

4. What’s with the circles and angles being drawn on the keypoints?

20

5. How does the homography know how to draw the outline? How would it respond to a

triangular or circular image? What about something abstractly shaped?

6. How does my UI know to adjust the label positions when I’m displaying my keypoints

(it expands somehow)?

3.4. Random Thoughts

• I find these bugs hilarious for some reason

• Midterm friday and I decided I was going to ease up on the gas this week. . . now I

have to floor it. . . who would have thought

4. Date: October 8th, 2024

4.1. Goal: Build a neural network from scratch

4.2. Process

1. I just learned that neural networks are essentially a large set of arbitrary math expres-

sions? Maybe that’s not the best way to say it but, I’m trying to apply what I learned

from micrograd to neural networks.

2. He just said neural networks and backpropagation can be done with 100 lines of code

oh man. . .

Figure 33: Datatype and gradients are related

3. Why did he do this? If you increase b in the direction of the gradient you would get a

lower value of L overall. . . he was trying to increase L

4. I cant quite put in words what this is doing

21

Figure 34: New python stuff I don’t fully understand

5. How is it the accumulation of the gradients thats so beautiful

6. Why didnt he implement radd?

7. I asked gpt to fix my spacing cuz i messed up an indent somewhere (python is brutal)

8. He never implemented radd but you had to. . .

9. Thats amazing you always increase your value with respect to its own gradient if you

want to increase your final value

10. Seems like i broke something doing the forward and backward prop he was demon-

strating to minimize loss idk what happened am i dividing by 0 or something

Figure 35: Strange error, trying to figure it out...

4.3. Questions

1. What is cross entropy loss and why does it sound so cool?

2. What actually was pytorch. . . i feel like i just threw it in

3. What happened at the very very end of the video?

4. Is the way I’ve commented illegal?

22

5. Date: October 15th, 2024

5.1. Goal: Character recognition from images

5.2. Process

1. Download and make a copy of the license plate generator

2. Asked gpt to help explain what the code we were given does

3. Basically it just draws nice license plates onto the background we downloaded

4. Two characters two numbers

5. for some reason the template given to us was referencing some random path that didn’t

exist so I changed it to pick out the ZZ21 license plate given to us

Figure 36: I think I am misunderstanding what this template is about but it’s okay let’s

continue

6. Oh im a fool. . . im not supposed to use the test image set. . . oops

Figure 37: Asking GPT to help me map an existing CNN to one that I wil have to build

myself

7. I asked gpt to learn what the cats vs dogs notebook was doing so that I can try to get

it to help me do the same thing for today’s assignment

8. I got the size of my images so that I could see what I need to crop

23

Figure 38: Image sizes printed on the bottom

9. Next step was to list some of the test images I generated so that I could get the cuts

for each letter done right

Figure 39: Completed hard-coded crop for license plate

10. These were the cutoff values that seemed to work best for the UR38 license plate. . .

kinda hoping it will work nicely for others, I can check real quick

11. (Also I used GPT to help me figure out how to crop images.)

12. It didn’t look perfect for another, so i made a minor adjustment

13. I love this, makes understanding this lab very easy. . . next step is to prepare the data

as chat GPT says

24

Figure 40: Working side by side with guidance from cgpt

14. soooo elegant, this makes sense

Figure 41: How to organize each image into a corresponding directory

15. I asked GPT to explain why we need to label our letters and numbers numerically

25

Figure 42: Prompting GPT to explain labels to me

16. it told me to normalize my data for faster compute, but I imagine this step is highly

unnecessary since it will be so fast anyway. . .

Figure 43: Optionally, divide by 255 to normalize pixel values for faster CNN processing

17. I have an issue where I think I polluted my training set so I’m refreshing the colab to

make sure

18. I think I made a mistake refreshing. . . its not connecting to colab anymore :/

19. My images aren’t all the same size so I’m going to crop them a little better

26

Figure 44: Forgot that images need to be same size for CNN processing

20. Massive set-back but eventually i changed the values to something that made sense

Figure 45: Fixed letter width and height

21. Check out how much data I generated

Figure 46: Around 4000 images ready to train the CNN!

27

Figure 47: Asking for help to understand all the numbers that .shape prints out

22. Oh man I’m cooked for this part, I asked for help with setting up the CNN architecture

and I am highly lost

23. Taking a walk while the model trains

Figure 48: Training the model!

24. These values must be fantastic. . . surely that loss is amazing, let’s see some graphs

28

Figure 49: Definitely overfitting the training set

25. HAHAHAAAAAA something is critically wrong

26. Instead of debugging right away I’m going to continue with the lab and work backwards

later

27. I asked GPT for help with plotting the losses and confusion matrix

28. Now it’s time to debug

29

5.3. Questions

1. Why is my data overfitting so fast?

2. How many epochs should I choose?

3. Why are my val loss and val accuracy immediately set at 1 and 0 respectively?

4. Why does my confusion matrix only have diagonal values?

5. What does density mean in the context of the CNN architecture?

6. What does pooling mean in the context of the CNN architecture?

6. Date: October 29th, 2024

6.1. Goal: In sim line following using RL

To implement a Q-Learning model for the line following robot we implemented earlier.

6.2. Process

Figure 50: Must register the line following in the init.py file!

1. cool part

30

6.3. Questions

1. Why do I need to register the line following?

7. Date: November 5th, 2024

7.1. Goal: Cross-entropy inverted pendulum balancer

Implement a controller that mixes reinforcement learning and deep learning to control an

unstable robot.

7.2. Process

1. Alrighty. . . Let’s download the folder given to us.

2. Now I’m going to ask GPT to help me decode all the steps in excruciating detail

3. Noticing PERCENTILE is set to 30. . . seems awfully low?

4. Learned that we have a hidden amount of layers (I wonder why we call them hidden)...

5. Learned that we have an input space of obs size, and an output of n actions.

6. Learned how each episode is stored as a tuple with steps and reward as the parameters.

7. Learned that we’re creating another tuple which stores the observation and action

taken for any particular step.

8. Noticing iterate batches is a little confusing.

9. Filter batch is pretty intuitive, I think I could write it from scratch.

10. Now we’ve reached the main training loop

11. GPT tells me to set the obs size and n actions.

Figure 51: GPT trying to pull me out the depths of confusion

12. Learned about Adam optimizer for changing weights in the CNN.

31

13. Asked GPT to teach me about the training loop

Figure 52: GPT explanation of how the training loop kinda works (and what to do)

Figure 53: Explanation continued...

14. OK time to test if it runs:

32

Figure 54: Class-provided instructions on how to run the simulation and monitor the training

15. All set.

Figure 55: Nice, it’s training!

33

7.3. Questions

1. Why did the lab say that usually we allow the 90th percentile and above to pass

through, but in the actual implementation the 70th and above was used?

2. What does it mean to “Convert to tensor”? You know. . . on that topic, what are

tensor cores?

3. Who made the objective function? How is it calculating loss?

7.4. Random Thoughts

• Wait, maybe this is dumb but what is the difference between a step and an action. . . ?

I’m sure it’ll make more sense in a minute.

• It’s not really easy to understand what iterate batches does, even with help from GPT.

I mean on a very high level, it iterates through episodes until a batch is done and then

moves on. . . but there’s a lot of meat here.

34

UNDATED LOGBOOK I USED FOR FINAL PROJECT

Obviously the wheel diameter is wrong😒…

UNDATED LOGBOOK I USED FOR FINAL PROJECT

OK SO I RESTARTED
Bro suggested i make a github

https://chatgpt.com/c/673f8a0e-cad0-800e-8832-a0466aa4d5b5

Crucial convo with GPT for future reference

Aight so the cmake and package xml files needed to change for the UI to work for some
I dont really understand what those do but its chill…

https://chatgpt.com/c/673f8a0e-cad0-800e-8832-a0466aa4d5b5

UNDATED LOGBOOK I USED FOR FINAL PROJECT

Now i got my wasd working no problem but i want it to be a little better, including make it so you
can press the wasd keys on my keyboard to make it work, and also i need them to only work
while pressed, rather than toggle on press…

UNDATED LOGBOOK I USED FOR FINAL PROJECT

UNDATED LOGBOOK I USED FOR FINAL PROJECT

UNDATED LOGBOOK I USED FOR FINAL PROJECT

UNDATED LOGBOOK I USED FOR FINAL PROJECT

UNDATED LOGBOOK I USED FOR FINAL PROJECT

UNDATED LOGBOOK I USED FOR FINAL PROJECT

UNDATED LOGBOOK I USED FOR FINAL PROJECT

UNDATED LOGBOOK I USED FOR FINAL PROJECT

UNDATED LOGBOOK I USED FOR FINAL PROJECT

10,10

UNDATED LOGBOOK I USED FOR FINAL PROJECT

fizzer@skynet:~ 2024-12-02 00:28:34

$ rosservice call /gazebo/get_model_state "{model_name: 'B1', relative_entity_name: 'world'}"

header:

seq: 1

stamp:

secs: 100

nsecs: 452000000

frame_id: "world"

pose:

position:

UNDATED LOGBOOK I USED FOR FINAL PROJECT

x: 5.49942880783774

y: 2.504030700996579

z: 0.04000039797012949

orientation:

x: 7.377270669093508e-07

y: -4.3205541389025773e-07

z: -0.7090994033738673

w: 0.7051085279119056

twist:

linear:

x: -3.429385519482691e-07

y: -3.45936087976483e-05

z: -6.961205134532641e-08

angular:

x: -3.3675953025424427e-08

y: -1.695382569344429e-07

z: 2.0465679826048485e-07

success: True

status_message: "GetModelState: got properties"

fizzer@skynet:~ 2024-12-02 00:29:12

$

here's position one

fizzer@skynet:~ 2024-12-02 00:29:12

$ rosservice call /gazebo/get_model_state "{model_name: 'B1', relative_entity_name: 'world'}"

UNDATED LOGBOOK I USED FOR FINAL PROJECT

header:

seq: 2

stamp:

secs: 179

nsecs: 510000000

frame_id: "world"

pose:

position:

x: 5.3474887443153785

y: -0.9349569584188745

z: 0.04000037723629943

orientation:

x: 1.7321540120358244e-06

y: 8.610931097589084e-07

z: -0.814923731390067

w: 0.5795682117003553

twist:

linear:

x: -1.9867217578075866e-06

y: -3.4124615815287025e-06

z: -2.5248927044901413e-07

angular:

x: -1.1459745374714128e-06

y: 8.582504550650873e-08

UNDATED LOGBOOK I USED FOR FINAL PROJECT

z: 3.4741473200116976e-06

success: True

status_message: "GetModelState: got properties"

fizzer@skynet:~ 2024-12-02 00:30:31

$

heres position two

fizzer@skynet:~ 2024-12-02 00:30:31

$ rosservice call /gazebo/get_model_state "{model_name: 'B1', relative_entity_name: 'world'}"

header:

seq: 3

stamp:

secs: 226

nsecs: 396000000

frame_id: "world"

pose:

position:

x: 4.31305060031579

y: -1.3878525178704242

z: 0.04000050138909643

orientation:

x: 2.8548229122584364e-07

y: 5.904484287748461e-08

z: -0.9992515317144463

w: -0.038683024264505914

UNDATED LOGBOOK I USED FOR FINAL PROJECT

twist:

linear:

x: -4.6083482126018436e-05

y: 4.578524056041447e-06

z: -3.021915736653228e-07

angular:

x: -9.706895705051767e-07

y: -5.44937590917467e-07

z: -3.980972746240802e-06

success: True

status_message: "GetModelState: got properties"

fizzer@skynet:~ 2024-12-02 00:31:18

$

heres position three

fizzer@skynet:~ 2024-12-02 00:31:18

$ rosservice call /gazebo/get_model_state "{model_name: 'B1', relative_entity_name: 'world'}"

header:

seq: 4

stamp:

secs: 264

nsecs: 878000000

frame_id: "world"

pose:

position:

UNDATED LOGBOOK I USED FOR FINAL PROJECT

x: 0.6491008198665422

y: -0.9207976055506509

z: 0.04000053773996677

orientation:

x: 5.673153474413703e-07

y: 1.1238297852020603e-07

z: -0.6684896009764731

w: -0.7437214891247805

twist:

linear:

x: 3.6258892883050236e-05

y: 4.6779347039224744e-05

z: 0.0002147694215817508

angular:

x: 0.000118433678818386

y: -7.521498400007287e-05

z: 4.92834007489305e-05

success: True

status_message: "GetModelState: got properties"

fizzer@skynet:~ 2024-12-02 00:31:57

$

heres position 4

fizzer@skynet:~ 2024-12-02 00:31:57

$ rosservice call /gazebo/get_model_state "{model_name: 'B1', relative_entity_name: 'world'}"

UNDATED LOGBOOK I USED FOR FINAL PROJECT

header:

seq: 5

stamp:

secs: 302

nsecs: 346000000

frame_id: "world"

pose:

position:

x: 0.6689328884773375

y: 2.01851026363387

z: 0.04000094070292316

orientation:

x: -2.860153819036568e-06

y: 3.005876131366921e-06

z: 0.7085922122246099

w: -0.7056182230905165

twist:

linear:

x: -9.686719334696047e-09

y: -1.0315268016265393e-05

z: -2.2654604084937307e-08

angular:

x: 1.1899176535352882e-08

y: 2.2921365858617846e-07

UNDATED LOGBOOK I USED FOR FINAL PROJECT

z: 1.3864187333922176e-07

success: True

status_message: "GetModelState: got properties"

fizzer@skynet:~ 2024-12-02 00:32:35

$

here's position 5

fizzer@skynet:~ 2024-12-02 00:32:35

$ rosservice call /gazebo/get_model_state "{model_name: 'B1', relative_entity_name: 'world'}"

header:

seq: 6

stamp:

secs: 331

nsecs: 98000000

frame_id: "world"

pose:

position:

x: -3.0218217082015695

y: 1.5572375439630923

z: 0.03997891270315111

orientation:

x: -4.068919485243806e-05

y: -9.436718605393764e-05

z: 0.9984824087289902

w: 0.05507148897549148

UNDATED LOGBOOK I USED FOR FINAL PROJECT

twist:

linear:

x: -0.000986809555304847

y: -0.0014373767037252595

z: -0.012317697313816734

angular:

x: 0.0986408972496164

y: -0.04489834128880002

z: -0.0051109325794474

success: True

status_message: "GetModelState: got properties"

fizzer@skynet:~ 2024-12-02 00:33:04

$

heres position 6

fizzer@skynet:~ 2024-12-02 00:34:10

$ rosservice call /gazebo/get_model_state "{model_name: 'B1', relative_entity_name: 'world'}"

header:

seq: 8

stamp:

secs: 412

nsecs: 700000000

frame_id: "world"

pose:

position:

UNDATED LOGBOOK I USED FOR FINAL PROJECT

x: -4.301637175421005

y: -2.312349652507272

z: 0.03998563711874584

orientation:

x: -6.732302218612708e-06

y: 0.00012692216855302477

z: -0.05064239775258873

w: -0.9987168424510062

twist:

linear:

x: -0.0006081228219745929

y: -0.00021954653680757505

z: -0.00753131928801298

angular:

x: 0.012700679493104099

y: -0.12287423523921809

z: 0.001318436035590488

success: True

status_message: "GetModelState: got properties"

fizzer@skynet:~ 2024-12-02 00:34:25

$

heres position 7

fizzer@skynet:~ 2024-12-02 00:34:25

$ rosservice call /gazebo/get_model_state "{model_name: 'B1', relative_entity_name: 'world'}"

UNDATED LOGBOOK I USED FOR FINAL PROJECT

header:

seq: 1

stamp:

secs: 88

nsecs: 468000000

frame_id: "world"

pose:

position:

x: -1.2089846301463472

y: -1.186840844647

z: 1.8503400563324273

orientation:

x: -0.0057606116672731245

y: -0.013744051998107805

z: -0.0008294302102146539

w: -0.9998886080126218

twist:

linear:

x: 0.0017851634276949322

y: -0.0031014706121645142

z: -0.003942814968645114

angular:

x: 0.20511033665167425

y: -0.0014941832167760828

UNDATED LOGBOOK I USED FOR FINAL PROJECT

z: 0.004200353113679486

success: True

status_message: "GetModelState: got properties"

fizzer@skynet:~ 2024-12-02 00:46:17

$

heres position 8

fizzer@skynet:~/fizzcomp 2024-12-02 05:54:58
$ python3 -c "import tensorflow as tf; print('TensorFlow version:', tf.__version__)"
2024-12-02 05:57:18.495692: W tensorflow/stream_executor/platform/default/dso_loader.cc:64]
Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared
object file: No such file or directory; LD_LIBRARY_PATH:
/home/fizzer/fizzcomp/devel/lib:/opt/ros/noetic/lib
2024-12-02 05:57:18.495714: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore
above cudart dlerror if you do not have a GPU set up on your machine.
TensorFlow version: 2.9.3
fizzer@skynet:~/fizzcomp 2024-12-02 05:57:22
$ python3 -c "import keras; print('Keras version:', keras.__version__)"
2024-12-02 05:57:22.992055: W tensorflow/stream_executor/platform/default/dso_loader.cc:64]
Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared
object file: No such file or directory; LD_LIBRARY_PATH:
/home/fizzer/fizzcomp/devel/lib:/opt/ros/noetic/lib
2024-12-02 05:57:22.992093: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore
above cudart dlerror if you do not have a GPU set up on your machine.
Keras version: 2.9.0
fizzer@skynet:~/fizzcomp 2024-12-02 05:57:24
$

#!/usr/bin/env python3

import sys
import os
import rospkg
import rospy
from PyQt5 import QtWidgets, uic, QtCore, QtGui

UNDATED LOGBOOK I USED FOR FINAL PROJECT

from geometry_msgs.msg import Twist
from sensor_msgs.msg import Image
from cv_bridge import CvBridge, CvBridgeError
import cv2
import numpy as np
import datetime

from PyQt5.QtCore import pyqtSignal

----- New Imports -----
from gazebo_msgs.srv import SetModelState, SetModelStateRequest
from gazebo_msgs.msg import ModelState

class ControllerGUI(QtWidgets.QMainWindow):
Define a signal that carries the processed image and billCombo selection
image_update_signal = pyqtSignal(np.ndarray, str)

def __init__(self):
super(ControllerGUI, self).__init__()

Initialize ROS node
rospy.init_node('controller_gui_node', anonymous=True)

Initialize CvBridge
self.bridge = CvBridge()

Get the path to the 'controller' package
rospack = rospkg.RosPack()
package_path = rospack.get_path('controller')

Construct the full path to 'developer_tools.ui'
ui_file = os.path.join(package_path, 'developer_tools.ui') # Adjust if it's in a subdirectory

Load the UI file
if not os.path.exists(ui_file):
rospy.logerr(f"UI file not found: {ui_file}")
sys.exit(1)
else:
uic.loadUi(ui_file, self)

Make movement buttons checkable
self.move_forward.setCheckable(True)
self.move_backward.setCheckable(True)

UNDATED LOGBOOK I USED FOR FINAL PROJECT

self.move_left.setCheckable(True)
self.move_right.setCheckable(True)

Set 'Raw' as the default option in mainCombo
index = self.mainCombo.findText("Raw")
if index != -1:
self.mainCombo.setCurrentIndex(index)

Set 'Raw' as the default option in billCombo
bill_index = self.billCombo.findText("Raw")
if bill_index != -1:
self.billCombo.setCurrentIndex(bill_index)

Set up publishers
self.pub_cmd_vel = rospy.Publisher('/B1/cmd_vel', Twist, queue_size=10)

Connect UI elements to functions
self.move_forward.clicked.connect(self.toggle_move_forward)
self.move_backward.clicked.connect(self.toggle_move_backward)
self.move_left.clicked.connect(self.toggle_move_left)
self.move_right.clicked.connect(self.toggle_move_right)
self.auto_drive_toggle.clicked.connect(self.auto_drive_toggle_function)
self.saveImage.clicked.connect(self.save_image_function)

Initialize set to keep track of pressed keys
self.pressed_keys = set()

Movement flags controlled by buttons
self.button_move_forward = False
self.button_move_backward = False
self.button_move_left = False
self.button_move_right = False

Start a timer to call publish_movement at regular intervals
self.timer = QtCore.QTimer()
self.timer.timeout.connect(self.publish_movement)
self.timer.start(100) # Every 100 ms (10 Hz)

Subscribe to the image topic
self.image_sub = rospy.Subscriber('/B1/rrbot/camera1/image_raw', Image,

self.image_callback)

Connect the image update signal to the update_billboard slot
self.image_update_signal.connect(self.update_billboard)

UNDATED LOGBOOK I USED FOR FINAL PROJECT

Ensure the window can accept focus and receive key events
self.setFocusPolicy(QtCore.Qt.StrongFocus)

----- Added Section: Initialize Sliders and Labels for HSV -----

Default HSV bounds
self.lower_color = np.array([0, 0, 174])
self.upper_color = np.array([179, 91, 255])

Set default slider values for lower bounds
self.hSlider.setMinimum(0)
self.hSlider.setMaximum(179)
self.hSlider.setValue(self.lower_color[0])
self.sSlider.setMinimum(0)
self.sSlider.setMaximum(255)
self.sSlider.setValue(self.lower_color[1])
self.vSlider.setMinimum(0)
self.vSlider.setMaximum(255)
self.vSlider.setValue(self.lower_color[2])

Set default slider values for upper bounds
self.hSlider_2.setMinimum(0)
self.hSlider_2.setMaximum(179)
self.hSlider_2.setValue(self.upper_color[0])
self.sSlider_2.setMinimum(0)
self.sSlider_2.setMaximum(255)
self.sSlider_2.setValue(self.upper_color[1])
self.vSlider_2.setMinimum(0)
self.vSlider_2.setMaximum(255)
self.vSlider_2.setValue(self.upper_color[2])

Update labels with default slider values
self.hText.setText(str(self.hSlider.value()))
self.sText.setText(str(self.sSlider.value()))
self.vText.setText(str(self.vSlider.value()))
self.hText_2.setText(str(self.hSlider_2.value()))
self.sText_2.setText(str(self.sSlider_2.value()))
self.vText_2.setText(str(self.vSlider_2.value()))

Connect sliders to their respective update functions
self.hSlider.valueChanged.connect(self.update_hText)
self.sSlider.valueChanged.connect(self.update_sText)
self.vSlider.valueChanged.connect(self.update_vText)

UNDATED LOGBOOK I USED FOR FINAL PROJECT

self.hSlider_2.valueChanged.connect(self.update_hText_2)
self.sSlider_2.valueChanged.connect(self.update_sText_2)
self.vSlider_2.valueChanged.connect(self.update_vText_2)

----- End of Added Section -----

----- New Section: Define Teleport Positions -----
self.teleport_positions = {
'TP1': {

'position': {'x': 5.49942880783774, 'y': 2.504030700996579, 'z':
0.04000039797012949},

'orientation': {'x': 7.377270669093508e-07, 'y': -4.3205541389025773e-07, 'z':
-0.7090994033738673, 'w': 0.7051085279119056}

},
'TP2': {

'position': {'x': 5.3474887443153785, 'y': -0.9349569584188745, 'z':
0.04000037723629943},

'orientation': {'x': 1.7321540120358244e-06, 'y': 8.610931097589084e-07, 'z':
-0.814923731390067, 'w': 0.5795682117003553}

},
'TP3': {

'position': {'x': 4.31305060031579, 'y': -1.3878525178704242, 'z':
0.04000050138909643},

'orientation': {'x': 2.8548229122584364e-07, 'y': 5.904484287748461e-08, 'z':
-0.9992515317144463, 'w': -0.038683024264505914}

},
'TP4': {

'position': {'x': 0.6491008198665422, 'y': -0.9207976055506509, 'z':
0.04000053773996677},

'orientation': {'x': 5.673153474413703e-07, 'y': 1.1238297852020603e-07, 'z':
-0.6684896009764731, 'w': -0.7437214891247805}

},
'TP5': {

'position': {'x': 0.6689328884773375, 'y': 2.01851026363387, 'z':
0.04000094070292316},

'orientation': {'x': -2.860153819036568e-06, 'y': 3.005876131366921e-06, 'z':
0.7085922122246099, 'w': -0.7056182230905165}

},
'TP6': {

'position': {'x': -3.0218217082015695, 'y': 1.5572375439630923, 'z':
0.03997891270315111},

'orientation': {'x': -4.068919485243806e-05, 'y': -9.436718605393764e-05, 'z':
0.9984824087289902, 'w': 0.05507148897549148}

},

UNDATED LOGBOOK I USED FOR FINAL PROJECT

'TP7': {
'position': {'x': -4.301637175421005, 'y': -2.312349652507272, 'z':

0.03998563711874584},
'orientation': {'x': -6.732302218612708e-06, 'y': 0.00012692216855302477, 'z':

-0.05064239775258873, 'w': -0.9987168424510062}
},
'TP8': {

'position': {'x': -1.2089846301463472, 'y': -1.186840844647, 'z':
1.8503400563324273},

'orientation': {'x': -0.0057606116672731245, 'y': -0.013744051998107805, 'z':
-0.0008294302102146539, 'w': -0.9998886080126218}

}
}
----- End of New Section -----

----- New Section: Set Up Teleport Service Proxy -----
rospy.loginfo("Waiting for /gazebo/set_model_state service...")
rospy.wait_for_service('/gazebo/set_model_state')
try:
self.set_model_state_service = rospy.ServiceProxy('/gazebo/set_model_state',

SetModelState)
rospy.loginfo("/gazebo/set_model_state service is available.")
except rospy.ServiceException as e:
rospy.logerr(f"Service initialization failed: {e}")
sys.exit(1)
----- End of New Section -----

----- New Section: Connect TP Buttons to Teleport Functions -----
self.TP1.clicked.connect(lambda: self.teleport_to_position('TP1'))
self.TP2.clicked.connect(lambda: self.teleport_to_position('TP2'))
self.TP3.clicked.connect(lambda: self.teleport_to_position('TP3'))
self.TP4.clicked.connect(lambda: self.teleport_to_position('TP4'))
self.TP5.clicked.connect(lambda: self.teleport_to_position('TP5'))
self.TP6.clicked.connect(lambda: self.teleport_to_position('TP6'))
self.TP7.clicked.connect(lambda: self.teleport_to_position('TP7'))
self.TP8.clicked.connect(lambda: self.teleport_to_position('TP8'))
----- End of New Section -----

----- New Section: Teleport Function -----
def teleport_to_position(self, tp_name):
"""
Teleports the robot to the specified TP position.

:param tp_name: String name of the TP button (e.g., 'TP1', 'TP2', ...)

UNDATED LOGBOOK I USED FOR FINAL PROJECT

"""
if tp_name not in self.teleport_positions:
rospy.logerr(f"Teleport position '{tp_name}' not defined.")
return

position = self.teleport_positions[tp_name]['position']
orientation = self.teleport_positions[tp_name]['orientation']

Create a ModelState message
model_state = ModelState()
model_state.model_name = 'B1' # Ensure this matches your robot's model name in

Gazebo
model_state.pose.position.x = position['x']
model_state.pose.position.y = position['y']
model_state.pose.position.z = position['z']
model_state.pose.orientation.x = orientation['x']
model_state.pose.orientation.y = orientation['y']
model_state.pose.orientation.z = orientation['z']
model_state.pose.orientation.w = orientation['w']
model_state.reference_frame = 'world' # Relative to the 'world' frame

Create the service request
set_state_request = SetModelStateRequest()
set_state_request.model_state = model_state

try:
Call the service to set the model state
response = self.set_model_state_service(set_state_request)
if response.success:

rospy.loginfo(f"Successfully teleported to {tp_name}.")
else:

rospy.logerr(f"Failed to teleport to {tp_name}: {response.status_message}")
except rospy.ServiceException as e:
rospy.logerr(f"Service call failed: {e}")
----- End of New Section -----

----- Existing Methods Below -----
def toggle_move_forward(self):
self.button_move_forward = self.move_forward.isChecked()
if self.button_move_forward:
self.move_forward.setStyleSheet("background-color: green")
else:
self.move_forward.setStyleSheet("")
rospy.loginfo(f"Move Forward: {'On' if self.button_move_forward else 'Off'}")

UNDATED LOGBOOK I USED FOR FINAL PROJECT

def toggle_move_backward(self):
self.button_move_backward = self.move_backward.isChecked()
if self.button_move_backward:
self.move_backward.setStyleSheet("background-color: green")
else:
self.move_backward.setStyleSheet("")
rospy.loginfo(f"Move Backward: {'On' if self.button_move_backward else 'Off'}")

def toggle_move_left(self):
self.button_move_left = self.move_left.isChecked()
if self.button_move_left:
self.move_left.setStyleSheet("background-color: green")
else:
self.move_left.setStyleSheet("")
rospy.loginfo(f"Move Left: {'On' if self.button_move_left else 'Off'}")

def toggle_move_right(self):
self.button_move_right = self.move_right.isChecked()
if self.button_move_right:
self.move_right.setStyleSheet("background-color: green")
else:
self.move_right.setStyleSheet("")
rospy.loginfo(f"Move Right: {'On' if self.button_move_right else 'Off'}")

Keyboard event handlers
def keyPressEvent(self, event):
if not event.isAutoRepeat():
key = event.key()
if key in [QtCore.Qt.Key_W, QtCore.Qt.Key_A, QtCore.Qt.Key_S, QtCore.Qt.Key_D]:

self.pressed_keys.add(key)
rospy.logdebug(f"Key Pressed: {QtCore.Qt.keyToString(key)}")

def keyReleaseEvent(self, event):
if not event.isAutoRepeat():
key = event.key()
if key in [QtCore.Qt.Key_W, QtCore.Qt.Key_A, QtCore.Qt.Key_S, QtCore.Qt.Key_D]:

self.pressed_keys.discard(key)
rospy.logdebug(f"Key Released: {QtCore.Qt.keyToString(key)}")

Function to publish movement commands
def publish_movement(self):
twist = Twist()

UNDATED LOGBOOK I USED FOR FINAL PROJECT

Keyboard-controlled movement
if QtCore.Qt.Key_W in self.pressed_keys:
twist.linear.x += 5.0 # Move forward
if QtCore.Qt.Key_S in self.pressed_keys:
twist.linear.x -= 5.0 # Move backward
if QtCore.Qt.Key_A in self.pressed_keys:
twist.angular.z += 3.0 # Turn left
if QtCore.Qt.Key_D in self.pressed_keys:
twist.angular.z -= 3.0 # Turn right

Button-controlled movement
if self.button_move_forward:
twist.linear.x += 1.0
if self.button_move_backward:
twist.linear.x -= 1.0
if self.button_move_left:
twist.angular.z += 1.0
if self.button_move_right:
twist.angular.z -= 1.0

Publish the twist message
self.pub_cmd_vel.publish(twist)
rospy.logdebug(f"Published Twist: linear.x={twist.linear.x}, angular.z={twist.angular.z}")

def save_image_function(self):
"""
Saves the current image displayed on the billboard QLabel to a file.
"""
try:
Retrieve the current pixmap from the billboard
pixmap = self.billboard.pixmap()
if pixmap:

Get the path to the 'controller' package
rospack = rospkg.RosPack()
package_path = rospack.get_path('controller')

Define the directory to save images
save_dir = os.path.join(package_path, 'saved_images')
os.makedirs(save_dir, exist_ok=True) # Create directory if it doesn't exist

Generate a timestamped filename
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"billboard_{timestamp}.png"
file_path = os.path.join(save_dir, filename)

UNDATED LOGBOOK I USED FOR FINAL PROJECT

Save the pixmap to the file
if not pixmap.save(file_path):
rospy.logerr(f"Failed to save image to {file_path}")
else:
rospy.loginfo(f"Image saved to {file_path}")

else:
rospy.logwarn("No image to save on the billboard.")

except Exception as e:
rospy.logerr(f"Error saving image: {e}")

def auto_drive_toggle_function(self):
Implement
pass

Helper function to outline the largest contour on a binary image
def outline_largest_contour(self, binary_image):
contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)
if not contours:
return None # No contours found

Find the largest contour by area
largest_contour = max(contours, key=cv2.contourArea)

Draw the largest contour on the binary image
outlined_image = binary_image.copy()
cv2.drawContours(outlined_image, [largest_contour], -1, 255, 2) # White color

(thickness 2)

return outlined_image

Helper function to perform inverse perspective transform
def inverse_perspective_transform(self, outlined_image):
contours, _ = cv2.findContours(outlined_image, cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)
if not contours:
return None # No contours found

Find the largest contour by area
largest_contour = max(contours, key=cv2.contourArea)

Approximate the contour to a polygon
peri = cv2.arcLength(largest_contour, True)

UNDATED LOGBOOK I USED FOR FINAL PROJECT

approx = cv2.approxPolyDP(largest_contour, 0.01 * peri, True) # 2% approximation

if len(approx) != 4:
Not a quadrilateral; cannot perform perspective transform
rospy.logwarn("Largest contour is not a quadrilateral. Skipping perspective transform.")
return None

Order the points in consistent order: top-left, top-right, bottom-right, bottom-left
pts = approx.reshape(4, 2)
rect = self.order_points(pts)

Compute the width and height of the new image
(tl, tr, br, bl) = rect
widthA = np.linalg.norm(br - bl)
widthB = np.linalg.norm(tr - tl)
maxWidth = max(int(widthA), int(widthB))

heightA = np.linalg.norm(tr - br)
heightB = np.linalg.norm(tl - bl)
maxHeight = max(int(heightA), int(heightB))

Destination points for the perspective transform
dst = np.array([
[0, 0],
[maxWidth - 1, 0],
[maxWidth - 1, maxHeight - 1],
[0, maxHeight - 1]
], dtype="float32")

Compute the perspective transform matrix
M = cv2.getPerspectiveTransform(rect, dst)

Apply the perspective transform
warped = cv2.warpPerspective(outlined_image, M, (maxWidth, maxHeight))

return warped

Helper function to order points
def order_points(self, pts):
Initialize a list of coordinates that will be ordered
rect = np.zeros((4, 2), dtype="float32")

Sum and difference to find top-left and bottom-right
s = pts.sum(axis=1)

UNDATED LOGBOOK I USED FOR FINAL PROJECT

diff = np.diff(pts, axis=1)

rect[0] = pts[np.argmin(s)] # Top-left
rect[2] = pts[np.argmax(s)] # Bottom-right
rect[1] = pts[np.argmin(diff)] # Top-right
rect[3] = pts[np.argmax(diff)] # Bottom-left

return rect

def image_callback(self, msg):
Process mainfeed based on mainCombo selection
main_selection = self.mainCombo.currentText()

if main_selection == "Raw":
try:

Convert ROS Image message to OpenCV image
cv_image = self.bridge.imgmsg_to_cv2(msg, desired_encoding='bgr8')

Convert the image to RGB format
cv_image_rgb = cv2.cvtColor(cv_image, cv2.COLOR_BGR2RGB)

Get image dimensions
height, width, channel = cv_image_rgb.shape
bytes_per_line = 3 * width

Convert to QImage for mainfeed
qt_image = QtGui.QImage(cv_image_rgb.data, width, height, bytes_per_line,

QtGui.QImage.Format_RGB888)

Scale the image to fit the QLabel while maintaining aspect ratio
scaled_image = qt_image.scaled(self.mainfeed.size(),

QtCore.Qt.KeepAspectRatio, QtCore.Qt.SmoothTransformation)

Set the pixmap of the QLabel
self.mainfeed.setPixmap(QtGui.QPixmap.fromImage(scaled_image))

except CvBridgeError as e:
rospy.logerr(f"CvBridge Error: {e}")

elif main_selection == "HSV":
try:

Retrieve current HSV bounds from sliders
lower_h = self.hSlider.value()
lower_s = self.sSlider.value()

UNDATED LOGBOOK I USED FOR FINAL PROJECT

lower_v = self.vSlider.value()
upper_h = self.hSlider_2.value()
upper_s = self.sSlider_2.value()
upper_v = self.vSlider_2.value()

Update lower and upper color arrays
lower_color = np.array([lower_h, lower_s, lower_v])
upper_color = np.array([upper_h, upper_s, upper_v])

Convert ROS Image message to OpenCV image
cv_image = self.bridge.imgmsg_to_cv2(msg, desired_encoding='bgr8')

Convert the image to HSV color space
hsv_image = cv2.cvtColor(cv_image, cv2.COLOR_BGR2HSV)

Create a binary mask where the target color is white and the rest is black
mask = cv2.inRange(hsv_image, lower_color, upper_color)

Apply morphological operations to remove noise and smooth the mask
kernel = np.ones((1, 10), np.uint8)
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations=2)
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=2)

Display the processed mask
processed_image_display = mask

Convert processed image to QImage for display
height, width = processed_image_display.shape
bytes_per_line = width
qt_image = QtGui.QImage(processed_image_display.data, width, height,

bytes_per_line, QtGui.QImage.Format_Grayscale8)

Scale the image to fit the mainfeed QLabel while maintaining aspect ratio
scaled_image = qt_image.scaled(self.mainfeed.size(),

QtCore.Qt.KeepAspectRatio, QtCore.Qt.SmoothTransformation)

Set the pixmap of the mainfeed QLabel
self.mainfeed.setPixmap(QtGui.QPixmap.fromImage(scaled_image))

except CvBridgeError as e:
rospy.logerr(f"CvBridge Error: {e}")

else:
rospy.logwarn(f"Unknown mainCombo selection: {main_selection}")

UNDATED LOGBOOK I USED FOR FINAL PROJECT

Optionally, handle other cases or default behavior

Process billboard based on billCombo selection
bill_selection = self.billCombo.currentText()

try:
Convert ROS Image message to OpenCV image
cv_image = self.bridge.imgmsg_to_cv2(msg, desired_encoding='bgr8')

Convert the image to HSV color space
hsv_image = cv2.cvtColor(cv_image, cv2.COLOR_BGR2HSV)

Define the lower and upper bounds for the target color (e.g., blue)
lower_color_bill = np.array([100, 120, 0])
upper_color_bill = np.array([140, 255, 255])

Create a binary mask where the target color is white and the rest is black
mask = cv2.inRange(hsv_image, lower_color_bill, upper_color_bill)

Apply morphological operations to remove noise and smooth the mask
kernel = np.ones((1, 1), np.uint8)
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations=2)
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=2)

Initialize variables
processed_image = mask.copy() # Start with the cleaned binary image
quadrilateral_found = False # Flag for billboard indicator

if bill_selection == "Raw":
Display the cleaned binary image directly
processed_image_display = mask

elif bill_selection == "Contour":
Outline the largest quadrilateral contour on the cleaned binary image
outlined_image = self.outline_largest_contour(mask)
if outlined_image is not None:
processed_image_display = outlined_image
else:
processed_image_display = mask

elif bill_selection == "Homography":
Outline the largest quadrilateral contour on the cleaned binary image
outlined_image = self.outline_largest_contour(mask)
if outlined_image is not None:

UNDATED LOGBOOK I USED FOR FINAL PROJECT

Attempt inverse perspective transform
warped_image = self.inverse_perspective_transform(outlined_image)
if warped_image is not None:
processed_image_display = warped_image
quadrilateral_found = True # IPT successful
else:
processed_image_display = outlined_image
else:
processed_image_display = mask

else:
rospy.logwarn(f"Unknown billCombo selection: {bill_selection}")
processed_image_display = mask

Emit the signal with the processed image and bill selection
self.image_update_signal.emit(processed_image_display, bill_selection)

except CvBridgeError as e:
rospy.logerr(f"CvBridge Error: {e}")

@QtCore.pyqtSlot(np.ndarray, str)
def update_billboard(self, processed_image_display, bill_selection):
Convert processed image to QImage for display
if len(processed_image_display.shape) == 2:
Grayscale image
height, width = processed_image_display.shape
bytes_per_line = width
qt_image = QtGui.QImage(processed_image_display.data, width, height, bytes_per_line,

QtGui.QImage.Format_Grayscale8)
else:
Color image (warped_image should be color if IPT was successful)
processed_image_rgb = cv2.cvtColor(processed_image_display,

cv2.COLOR_BGR2RGB)
height, width, channel = processed_image_rgb.shape
bytes_per_line = 3 * width
qt_image = QtGui.QImage(processed_image_rgb.data, width, height, bytes_per_line,

QtGui.QImage.Format_RGB888)

Scale the image to fit the billboard QLabel while maintaining aspect ratio
scaled_image = qt_image.scaled(self.billboard.size(), QtCore.Qt.KeepAspectRatio,

QtCore.Qt.SmoothTransformation)

Set the pixmap of the billboard QLabel
self.billboard.setPixmap(QtGui.QPixmap.fromImage(scaled_image))

UNDATED LOGBOOK I USED FOR FINAL PROJECT

----- Added Section: Slider Update Functions -----
def update_hText(self, value):
self.hText.setText(str(value))

def update_sText(self, value):
self.sText.setText(str(value))

def update_vText(self, value):
self.vText.setText(str(value))

def update_hText_2(self, value):
self.hText_2.setText(str(value))

def update_sText_2(self, value):
self.sText_2.setText(str(value))

def update_vText_2(self, value):
self.vText_2.setText(str(value))
----- End of Added Section -----

if __name__ == '__main__':
Initialize ROS node in the main thread if not already initialized
if not rospy.core.is_initialized():
rospy.init_node('controller_gui_node', anonymous=True)

app = QtWidgets.QApplication(sys.argv)
window = ControllerGUI()
window.show()
try:
sys.exit(app.exec_())
except rospy.ROSInterruptException:
Pass

TP TIME
👍
END BOARD
fizzer@skynet:~ 2024-12-03 20:13:11
$ rosservice call /gazebo/get_model_state "{model_name: 'B1', relative_entity_name: 'world'}"
header:
seq: 1
stamp:

secs: 208

UNDATED LOGBOOK I USED FOR FINAL PROJECT

nsecs: 170000000
frame_id: "world"
pose:
position:

x: -4.063470518828452
y: -2.2564473800170513
z: 0.04000018393550679

orientation:
x: -2.000162652701596e-07
y: -5.830896379528323e-07
z: -0.3377707635826839
w: -0.9412284054725457

twist:
linear:

x: 7.2973450851087e-06
y: 5.8943899099516665e-06
z: -8.164412211317728e-08

angular:
x: 1.5344223329651384e-07
y: 1.4127334378487544e-07
z: -9.24432881558964e-07

success: True
status_message: "GetModelState: got properties"
fizzer@skynet:~ 2024-12-03 20:13:14
$

Start:

fizzer@skynet:~ 2024-12-03 20:13:14
$ rosservice call /gazebo/get_model_state "{model_name: 'B1', relative_entity_name: 'world'}"
header:
seq: 2
stamp:

secs: 376
nsecs: 58000000

frame_id: "world"
pose:
position:

x: 0.5527487156990568
y: -0.12600472106246535
z: 0.04000056025622947

orientation:
x: 2.448884472570069e-07
y: 1.278603394462025e-07

UNDATED LOGBOOK I USED FOR FINAL PROJECT

z: -0.7071178631556455
w: -0.7070956990437133

twist:
linear:

x: 8.116451582490024e-07
y: 6.492124274429354e-05
z: -3.323202547936527e-07

angular:
x: -2.427257071260534e-06
y: 1.283560883718495e-06
z: -5.485636227147017e-06

success: True
status_message: "GetModelState: got properties"
fizzer@skynet:~ 2024-12-03 20:16:03
$

Middle:

fizzer@skynet:~ 2024-12-03 20:16:03
$ rosservice call /gazebo/get_model_state "{model_name: 'B1', relative_entity_name: 'world'}"
header:
seq: 3
stamp:

secs: 437
nsecs: 758000000

frame_id: "world"
pose:
position:

x: -4.008629252948557
y: 0.4038460916553116
z: 0.04000060474749287

orientation:
x: 7.154773655035404e-07
y: -1.501085552816514e-06
z: -0.4271649858420221
w: -0.9041736972882035

twist:
linear:

x: 2.3543821966816424e-05
y: 2.572388113532436e-05
z: -6.195886853266245e-07

angular:

UNDATED LOGBOOK I USED FOR FINAL PROJECT

x: 2.739456085130211e-06
y: -9.326830447456623e-09
z: 6.524870489909662e-06

success: True
status_message: "GetModelState: got properties"
fizzer@skynet:~ 2024-12-03 20:17:05

